
Multilingual Dependency Parsing
From Universal Dependencies to Sesame Street

Joakim Nivre

Uppsala University
Department of Linguistics and Philology

Dependency Parsing

teaåt

obj

Kim had

sbj

Dependency Parsing

teaåt

obj

Kim had

sbj

• Transparent encoding of predicate-argument structure

Dependency Parsing

teaåt

obj

Kim had

sbj

• Transparent encoding of predicate-argument structure
• Simple and efficient computational models

Dependency Parsing

teaåt

obj

Kim had

sbj

• Transparent encoding of predicate-argument structure
• Simple and efficient computational models
• Compatible with linguistic traditions around the world

Dependency Parsing

teaåt

obj

Kim had

sbj

• Transparent encoding of predicate-argument structure
• Simple and efficient computational models
• Compatible with linguistic traditions around the world
• Multilingual research tradition from CoNLL 2006–2007

CoNLL-X Shared Task

Sabine
Buchholz

Erwin
Marsi

Yuval
Krymolowski

Amit
Dubey

• First shared task on multilingual dependency parsing
• Data from heterogeneous treebanks in 13 languages
• Standardized into a single unified format (CoNLL-X)
• Enabled a new line of multilingual research

CoNLL-X Results
Arabic

Bulgarian

Chinese

Czech

Danish

Dutch

German

Japanese

Portuguese

Slovene

Spanish

Swedish

Turkish

0 10 20 30 40 50 60 70 80 90 100

Why the Differences?

• Amount of data – weak predictor overall

Why the Differences?

• Amount of data – weak predictor overall

• Text types – important but hard to measure

Why the Differences?

• Amount of data – weak predictor overall

• Text types – important but hard to measure

• Language types – analytical versus synthetic

Why the Differences?

• Amount of data – weak predictor overall

• Text types – important but hard to measure

• Language types – analytical versus synthetic

• Annotation – different descriptive traditions

Why the Differences?

En katt jagar r̊attor och möss

det nsubj conj

dobj

conj

En kat jager r̊ader og møs

nsubj

? dobj cc conj

A cat chases rats and mice

det nsubj dobj cc

conj

1

En katt jagar r̊attor och möss

det nsubj conj

dobj

conj

En kat jager rotter og mus

nsubj

? dobj cc conj

A cat chases rats and mice

det nsubj dobj cc

conj

Toutefois , les filles adorent les desserts .

toutefois , les fille adorer les dessert .

ADV PUNCT DET NOUN VERB DET NOUN PUNCT

Definite=Def Gender=Fem Number=Plur Definite=Def Gender=Masc
Number=Plur Number=Plur Person=3 Number=Plur Number=Plur

Tense=Pres

advmod

punct

det nsubj

root

det

dobj

punct

1

En katt jagar r̊attor och möss

det nsubj conj

dobj

conj

En kat jager r̊ader og møs

nsubj

? dobj cc conj

A cat chases rats and mice

det nsubj dobj cc

conj

1

En katt jagar r̊attor och möss

det nsubj conj

dobj

conj

En kat jager rotter og mus

nsubj

? dobj cc conj

A cat chases rats and mice

det nsubj dobj cc

conj

Toutefois , les filles adorent les desserts .

toutefois , les fille adorer les dessert .

ADV PUNCT DET NOUN VERB DET NOUN PUNCT

Definite=Def Gender=Fem Number=Plur Definite=Def Gender=Masc
Number=Plur Number=Plur Person=3 Number=Plur Number=Plur

Tense=Pres

advmod

punct

det nsubj

root

det

dobj

punct

1

En katt jagar r̊attor och möss

det nsubj conj

dobj

conj

En kat jager r̊ader og møs

nsubj

? dobj cc conj

A cat chases rats and mice

det nsubj dobj cc

conj

1

En katt jagar r̊attor och möss

det nsubj conj

dobj

conj

En kat jager rotter og mus

nsubj

? dobj cc conj

A cat chases rats and mice

det nsubj dobj cc

conj

Toutefois , les filles adorent les desserts .

toutefois , les fille adorer les dessert .

ADV PUNCT DET NOUN VERB DET NOUN PUNCT

Definite=Def Gender=Fem Number=Plur Definite=Def Gender=Masc
Number=Plur Number=Plur Person=3 Number=Plur Number=Plur

Tense=Pres

advmod

punct

det nsubj

root

det

dobj

punct

1

En katt jagar r̊attor och möss

det nsubj conj

dobj

conj

En kat jager r̊ader og møs

nsubj

? dobj cc conj

A cat chases rats and mice

det nsubj dobj cc

conj

1

En katt jagar r̊attor och möss

det nsubj conj

dobj

conj

En kat jager rotter og mus

nsubj

? dobj cc conj

A cat chases rats and mice

det nsubj dobj cc

conj

Toutefois , les filles adorent les desserts .

toutefois , les fille adorer les dessert .

ADV PUNCT DET NOUN VERB DET NOUN PUNCT

Definite=Def Gender=Fem Number=Plur Definite=Def Gender=Masc
Number=Plur Number=Plur Person=3 Number=Plur Number=Plur

Tense=Pres

advmod

punct

det nsubj

root

det

dobj

punct

1

En katt jagar r̊attor och möss

det nsubj conj

dobj

conj

En kat jager r̊ader og møs

nsubj

? dobj cc conj

A cat chases rats and mice

det nsubj dobj cc

conj

1

En katt jagar r̊attor och möss

det nsubj conj

dobj

conj

En kat jager rotter og mus

nsubj

? dobj cc conj

A cat chases rats and mice

det nsubj dobj cc

conj

Toutefois , les filles adorent les desserts .

toutefois , les fille adorer les dessert .

ADV PUNCT DET NOUN VERB DET NOUN PUNCT

Definite=Def Gender=Fem Number=Plur Definite=Def Gender=Masc
Number=Plur Number=Plur Person=3 Number=Plur Number=Plur

Tense=Pres

advmod

punct

det nsubj

root

det

dobj

punct

1

En katt jagar r̊attor och möss

det nsubj conj

dobj

conj

En kat jager r̊ader og møs

nsubj

? dobj cc conj

A cat chases rats and mice

det nsubj dobj cc

conj

1

En katt jagar r̊attor och möss

det nsubj conj

dobj

conj

En kat jager rotter og mus

nsubj

? dobj cc conj

A cat chases rats and mice

det nsubj dobj cc

conj

Toutefois , les filles adorent les desserts .

toutefois , les fille adorer les dessert .

ADV PUNCT DET NOUN VERB DET NOUN PUNCT

Definite=Def Gender=Fem Number=Plur Definite=Def Gender=Masc
Number=Plur Number=Plur Person=3 Number=Plur Number=Plur

Tense=Pres

advmod

punct

det nsubj

root

det

dobj

punct

1

En katt jagar r̊attor och möss

det nsubj conj

dobj

conj

En kat jager r̊ader og møs

nsubj

? dobj cc conj

A cat chases rats and mice

det nsubj dobj cc

conj

1

En katt jagar r̊attor och möss

det nsubj conj

dobj

conj

En kat jager rotter og mus

nsubj

? dobj cc conj

A cat chases rats and mice

det nsubj dobj cc

conj

Toutefois , les filles adorent les desserts .

toutefois , les fille adorer les dessert .

ADV PUNCT DET NOUN VERB DET NOUN PUNCT

Definite=Def Gender=Fem Number=Plur Definite=Def Gender=Masc
Number=Plur Number=Plur Person=3 Number=Plur Number=Plur

Tense=Pres

advmod

punct

det nsubj

root

det

dobj

punct

1

En katt jagar r̊attor och möss

det nsubj conj

dobj

conj

En kat jager r̊ader og møs

nsubj

? dobj cc conj

A cat chases rats and mice

det nsubj dobj cc

conj

1

En katt jagar r̊attor och möss

det nsubj conj

dobj

conj

En kat jager rotter og mus

nsubj

? dobj cc conj

A cat chases rats and mice

det nsubj dobj cc

conj

Toutefois , les filles adorent les desserts .

toutefois , les fille adorer les dessert .

ADV PUNCT DET NOUN VERB DET NOUN PUNCT

Definite=Def Gender=Fem Number=Plur Definite=Def Gender=Masc
Number=Plur Number=Plur Person=3 Number=Plur Number=Plur

Tense=Pres

advmod

punct

det nsubj

root

det

dobj

punct

1

En katt jagar r̊attor och möss

det nsubj conj

dobj

conj

En kat jager r̊ader og møs

nsubj

? dobj cc conj

A cat chases rats and mice

det nsubj dobj cc

conj

1

En katt jagar r̊attor och möss

det nsubj conj

dobj

conj

En kat jager rotter og mus

nsubj

? dobj cc conj

A cat chases rats and mice

det nsubj dobj cc

conj

Toutefois , les filles adorent les desserts .

toutefois , les fille adorer les dessert .

ADV PUNCT DET NOUN VERB DET NOUN PUNCT

Definite=Def Gender=Fem Number=Plur Definite=Def Gender=Masc
Number=Plur Number=Plur Person=3 Number=Plur Number=Plur

Tense=Pres

advmod

punct

det nsubj

root

det

dobj

punct

1

DT SS

OO

CJ CJ

nobj

subj

dobj coord conj

det nsubj dobj cc

conj

En katt jagar r̊attor och möss

det nsubj conj

dobj

conj

En kat jager r̊ader og møs

nsubj

? dobj cc conj

A cat chases rats and mice

det nsubj dobj cc

conj

1

En katt jagar r̊attor och möss

det nsubj conj

dobj

conj

En kat jager rotter og mus

nsubj

? dobj cc conj

A cat chases rats and mice

det nsubj dobj cc

conj

Toutefois , les filles adorent les desserts .

toutefois , les fille adorer les dessert .

ADV PUNCT DET NOUN VERB DET NOUN PUNCT

Definite=Def Gender=Fem Number=Plur Definite=Def Gender=Masc
Number=Plur Number=Plur Person=3 Number=Plur Number=Plur

Tense=Pres

advmod

punct

det nsubj

root

det

dobj

punct

1

En katt jagar r̊attor och möss

det nsubj conj

dobj

conj

En kat jager r̊ader og møs

nsubj

? dobj cc conj

A cat chases rats and mice

det nsubj dobj cc

conj

1

En katt jagar r̊attor och möss

det nsubj conj

dobj

conj

En kat jager rotter og mus

nsubj

? dobj cc conj

A cat chases rats and mice

det nsubj dobj cc

conj

Toutefois , les filles adorent les desserts .

toutefois , les fille adorer les dessert .

ADV PUNCT DET NOUN VERB DET NOUN PUNCT

Definite=Def Gender=Fem Number=Plur Definite=Def Gender=Masc
Number=Plur Number=Plur Person=3 Number=Plur Number=Plur

Tense=Pres

advmod

punct

det nsubj

root

det

dobj

punct

1

En katt jagar r̊attor och möss

det nsubj conj

dobj

conj

En kat jager r̊ader og møs

nsubj

? dobj cc conj

A cat chases rats and mice

det nsubj dobj cc

conj

1

En katt jagar r̊attor och möss

det nsubj conj

dobj

conj

En kat jager rotter og mus

nsubj

? dobj cc conj

A cat chases rats and mice

det nsubj dobj cc

conj

Toutefois , les filles adorent les desserts .

toutefois , les fille adorer les dessert .

ADV PUNCT DET NOUN VERB DET NOUN PUNCT

Definite=Def Gender=Fem Number=Plur Definite=Def Gender=Masc
Number=Plur Number=Plur Person=3 Number=Plur Number=Plur

Tense=Pres

advmod

punct

det nsubj

root

det

dobj

punct

1

DT SS

OO

CJ CJ

nobj

subj

dobj coord conj

det nsubj dobj cc

conj

Universal Dependencies
http://universaldependencies.org

En katt jagar r̊attor och möss

det nsubj conj

dobj

conj

En kat jager rotter og mus

nsubj

? dobj cc conj

A cat chases rats and mice

det nsubj dobj cc

conj

Toutefois , les filles adorent les desserts .

toutefois , le fille adorer le dessert .

ADV PUNCT DET NOUN VERB DET NOUN PUNCT

Definite=Def Gender=Fem Number=Plur Definite=Def Gender=Masc
Number=Plur Number=Plur Person=3 Number=Plur Number=Plur

Tense=Pres

advmod

punct

det nsubj

root

det

dobj

punct

Toutefois , les filles adorent les desserts .

toutefois , le fille adorer les dessert .

ADV PUNCT DET NOUN VERB DET NOUN PUNCT

Definite=Def Gender=Fem Number=Plur Definite=Def Gender=Masc
Number=Plur Number=Plur Person=3 Number=Plur Number=Plur

Tense=Pres

advmod

punct

det nsubj

root

det

obj

punct

1

http://universaldependencies.org

Universal Dependencies
http://universaldependencies.org

Part-of-speech tags

En katt jagar r̊attor och möss

det nsubj conj

dobj

conj

En kat jager rotter og mus

nsubj

? dobj cc conj

A cat chases rats and mice

det nsubj dobj cc

conj

Toutefois , les filles adorent les desserts .

toutefois , le fille adorer le dessert .

ADV PUNCT DET NOUN VERB DET NOUN PUNCT

Definite=Def Gender=Fem Number=Plur Definite=Def Gender=Masc
Number=Plur Number=Plur Person=3 Number=Plur Number=Plur

Tense=Pres

advmod

punct

det nsubj

root

det

dobj

punct

Toutefois , les filles adorent les desserts .

toutefois , le fille adorer les dessert .

ADV PUNCT DET NOUN VERB DET NOUN PUNCT

Definite=Def Gender=Fem Number=Plur Definite=Def Gender=Masc
Number=Plur Number=Plur Person=3 Number=Plur Number=Plur

Tense=Pres

advmod

punct

det nsubj

root

det

obj

punct

1

http://universaldependencies.org

Universal Dependencies
http://universaldependencies.org

Part-of-speech tags Morphological features

En katt jagar r̊attor och möss

det nsubj conj

dobj

conj

En kat jager rotter og mus

nsubj

? dobj cc conj

A cat chases rats and mice

det nsubj dobj cc

conj

Toutefois , les filles adorent les desserts .

toutefois , le fille adorer le dessert .

ADV PUNCT DET NOUN VERB DET NOUN PUNCT

Definite=Def Gender=Fem Number=Plur Definite=Def Gender=Masc
Number=Plur Number=Plur Person=3 Number=Plur Number=Plur

Tense=Pres

advmod

punct

det nsubj

root

det

dobj

punct

Toutefois , les filles adorent les desserts .

toutefois , le fille adorer les dessert .

ADV PUNCT DET NOUN VERB DET NOUN PUNCT

Definite=Def Gender=Fem Number=Plur Definite=Def Gender=Masc
Number=Plur Number=Plur Person=3 Number=Plur Number=Plur

Tense=Pres

advmod

punct

det nsubj

root

det

obj

punct

1

http://universaldependencies.org

Universal Dependencies
http://universaldependencies.org

Part-of-speech tags Morphological features

Syntactic relations

En katt jagar r̊attor och möss

det nsubj conj

dobj

conj

En kat jager rotter og mus

nsubj

? dobj cc conj

A cat chases rats and mice

det nsubj dobj cc

conj

Toutefois , les filles adorent les desserts .

toutefois , le fille adorer le dessert .

ADV PUNCT DET NOUN VERB DET NOUN PUNCT

Definite=Def Gender=Fem Number=Plur Definite=Def Gender=Masc
Number=Plur Number=Plur Person=3 Number=Plur Number=Plur

Tense=Pres

advmod

punct

det nsubj

root

det

dobj

punct

Toutefois , les filles adorent les desserts .

toutefois , le fille adorer les dessert .

ADV PUNCT DET NOUN VERB DET NOUN PUNCT

Definite=Def Gender=Fem Number=Plur Definite=Def Gender=Masc
Number=Plur Number=Plur Person=3 Number=Plur Number=Plur

Tense=Pres

advmod

punct

det nsubj

root

det

obj

punct

1

http://universaldependencies.org

Who?

Open community effort – a big tent

UD v2.5: 90 languages, 157 treebanks, 345 contributors

Come join us at http://universaldependencies.org

http://universaldependencies.org

Dan
Zeman

Jan
Hajič

Yoav
Goldberg

Reut
Tsarfaty

Slav
Petrov

Ryan
McDonald

Filip
Ginter

Sampo
Pyysalo

Sebastian
Schuster

Francis
Tyers

Marie
de Marneffe

Chris
Manning

Why?

Why?

Cross-linguistically consistent morphosyntactic annotation

Why?

Cross-linguistically consistent morphosyntactic annotation

Facilitate multilingual research in NLP and linguistics
• Meaningful linguistic analysis across languages
• Syntactic parsing in multilingual settings
• NLP systems for multiple languages
• Facilitate resource-building for new languages

Why?

Cross-linguistically consistent morphosyntactic annotation

Facilitate multilingual research in NLP and linguistics
• Meaningful linguistic analysis across languages
• Syntactic parsing in multilingual settings
• NLP systems for multiple languages
• Facilitate resource-building for new languages

Complement – not replace – language-specific schemes

How?

Focus on grammatical relations between (content) words

the dog chased the cat from the room

koira jahtasi kissan huoneesta

nsubj

nsubj

obj

obj

obl

obl

1

Morphology

‚‚‚ /// COLING ... ���fififiõõõ RRR ñññœœœ⌫⌫⌫>>>⇡⇡⇡

PROPN ADP PROPN ADP NOUN ADP VERB

Aspect=Imp
Polite=Humb

case case case

nsubj

objnmod

root

Napoli accoglie i partecipanti di il CLiC-it

PROPN VERB DET NOUN ADP DET PROPN

Number=Sing Definite=Def Gender=Masc Definite=Def
Person=3 Number=Plur Number=Plur Number=Sing

Tense=Pres

nsubj det

obj case

det

nmodroot

Osaka welcomes the participants of COLING

PROPN VERB DET NOUN ADP PROPN

Number=Sing Number=Sing Definite=Def Number=Sing Number=Sing
Person=3 PronType=Art

Tense=Pres

nsubj det

obj

case

nmod
root

Le chat chasse les chiens .
le chat chasser le chien .

DET NOUN VERB DET NOUN PUNCT
Definite=Def Gender=Masc Mood=Ind Definite=Def Gender=Masc
Gender=Masc Number=Sing Number=Sing Gender=Masc Number=Plur
Number=Sing Person=3 Number=Plur

Tense=Pres
VerbForm=Fin

2

Morphology

• Lemma representing the semantic content of the word

‚‚‚ /// COLING ... ���fififiõõõ RRR ñññœœœ⌫⌫⌫>>>⇡⇡⇡

PROPN ADP PROPN ADP NOUN ADP VERB

Aspect=Imp
Polite=Humb

case case case

nsubj

objnmod

root

Napoli accoglie i partecipanti di il CLiC-it

PROPN VERB DET NOUN ADP DET PROPN

Number=Sing Definite=Def Gender=Masc Definite=Def
Person=3 Number=Plur Number=Plur Number=Sing

Tense=Pres

nsubj det

obj case

det

nmodroot

Osaka welcomes the participants of COLING

PROPN VERB DET NOUN ADP PROPN

Number=Sing Number=Sing Definite=Def Number=Sing Number=Sing
Person=3 PronType=Art

Tense=Pres

nsubj det

obj

case

nmod
root

Le chat chasse les chiens .
le chat chasser le chien .

DET NOUN VERB DET NOUN PUNCT
Definite=Def Gender=Masc Mood=Ind Definite=Def Gender=Masc
Gender=Masc Number=Sing Number=Sing Gender=Masc Number=Plur
Number=Sing Person=3 Number=Plur

Tense=Pres
VerbForm=Fin

2

Morphology

• Lemma representing the semantic content of the word

• Part-of-speech tag representing its grammatical class

‚‚‚ /// COLING ... ���fififiõõõ RRR ñññœœœ⌫⌫⌫>>>⇡⇡⇡

PROPN ADP PROPN ADP NOUN ADP VERB

Aspect=Imp
Polite=Humb

case case case

nsubj

objnmod

root

Napoli accoglie i partecipanti di il CLiC-it

PROPN VERB DET NOUN ADP DET PROPN

Number=Sing Definite=Def Gender=Masc Definite=Def
Person=3 Number=Plur Number=Plur Number=Sing

Tense=Pres

nsubj det

obj case

det

nmodroot

Osaka welcomes the participants of COLING

PROPN VERB DET NOUN ADP PROPN

Number=Sing Number=Sing Definite=Def Number=Sing Number=Sing
Person=3 PronType=Art

Tense=Pres

nsubj det

obj

case

nmod
root

Le chat chasse les chiens .
le chat chasser le chien .

DET NOUN VERB DET NOUN PUNCT
Definite=Def Gender=Masc Mood=Ind Definite=Def Gender=Masc
Gender=Masc Number=Sing Number=Sing Gender=Masc Number=Plur
Number=Sing Person=3 Number=Plur

Tense=Pres
VerbForm=Fin

2

Morphology

• Lemma representing the semantic content of the word

• Part-of-speech tag representing its grammatical class

‚‚‚ /// COLING ... ���fififiõõõ RRR ñññœœœ⌫⌫⌫>>>⇡⇡⇡

PROPN ADP PROPN ADP NOUN ADP VERB

Aspect=Imp
Polite=Humb

case case case

nsubj

objnmod

root

Napoli accoglie i partecipanti di il CLiC-it

PROPN VERB DET NOUN ADP DET PROPN

Number=Sing Definite=Def Gender=Masc Definite=Def
Person=3 Number=Plur Number=Plur Number=Sing

Tense=Pres

nsubj det

obj case

det

nmodroot

Osaka welcomes the participants of COLING

PROPN VERB DET NOUN ADP PROPN

Number=Sing Number=Sing Definite=Def Number=Sing Number=Sing
Person=3 PronType=Art

Tense=Pres

nsubj det

obj

case

nmod
root

Le chat chasse les chiens .
le chat chasser le chien .

DET NOUN VERB DET NOUN PUNCT
Definite=Def Gender=Masc Mood=Ind Definite=Def Gender=Masc
Gender=Masc Number=Sing Number=Sing Gender=Masc Number=Plur
Number=Sing Person=3 Number=Plur

Tense=Pres
VerbForm=Fin

2

Open Closed Other
ADJ ADP PUNCT
ADV AUX SYM
INTJ CCONJ X

NOUN DET
PROPN NUM
VERB PART

PRON
SCONJ

Morphology

• Lemma representing the semantic content of the word

• Part-of-speech tag representing its grammatical class

• Features representing lexical and grammatical properties
of the lemma or the particular word form

‚‚‚ /// COLING ... ���fififiõõõ RRR ñññœœœ⌫⌫⌫>>>⇡⇡⇡

PROPN ADP PROPN ADP NOUN ADP VERB

Aspect=Imp
Polite=Humb

case case case

nsubj

objnmod

root

Napoli accoglie i partecipanti di il CLiC-it

PROPN VERB DET NOUN ADP DET PROPN

Number=Sing Definite=Def Gender=Masc Definite=Def
Person=3 Number=Plur Number=Plur Number=Sing

Tense=Pres

nsubj det

obj case

det

nmodroot

Osaka welcomes the participants of COLING

PROPN VERB DET NOUN ADP PROPN

Number=Sing Number=Sing Definite=Def Number=Sing Number=Sing
Person=3 PronType=Art

Tense=Pres

nsubj det

obj

case

nmod
root

Le chat chasse les chiens .
le chat chasser le chien .

DET NOUN VERB DET NOUN PUNCT
Definite=Def Gender=Masc Mood=Ind Definite=Def Gender=Masc
Gender=Masc Number=Sing Number=Sing Gender=Masc Number=Plur
Number=Sing Person=3 Number=Plur

Tense=Pres
VerbForm=Fin

2

Morphology

• Lemma representing the semantic content of the word

• Part-of-speech tag representing its grammatical class

• Features representing lexical and grammatical properties
of the lemma or the particular word form

‚‚‚ /// COLING ... ���fififiõõõ RRR ñññœœœ⌫⌫⌫>>>⇡⇡⇡

PROPN ADP PROPN ADP NOUN ADP VERB

Aspect=Imp
Polite=Humb

case case case

nsubj

objnmod

root

Napoli accoglie i partecipanti di il CLiC-it

PROPN VERB DET NOUN ADP DET PROPN

Number=Sing Definite=Def Gender=Masc Definite=Def
Person=3 Number=Plur Number=Plur Number=Sing

Tense=Pres

nsubj det

obj case

det

nmodroot

Osaka welcomes the participants of COLING

PROPN VERB DET NOUN ADP PROPN

Number=Sing Number=Sing Definite=Def Number=Sing Number=Sing
Person=3 PronType=Art

Tense=Pres

nsubj det

obj

case

nmod
root

Le chat chasse les chiens .
le chat chasser le chien .

DET NOUN VERB DET NOUN PUNCT
Definite=Def Gender=Masc Mood=Ind Definite=Def Gender=Masc
Gender=Masc Number=Sing Number=Sing Gender=Masc Number=Plur
Number=Sing Person=3 Number=Plur

Tense=Pres
VerbForm=Fin

2

Lexical Inflectional
Nominal

Inflectional
Verbal

PronType Gender VerbForm

NumType Animacy Mood

Poss Number Tense

Reflex Case Aspect

Foreign Definite Voice

Abbr Degree Evident

Polarity

Person

Polite

Syntax

The cat could have chased all the dogs down the street .

DET NOUN AUX AUX VERB DET DET NOUN ADP DET NOUN PUNCT

det

nsubj

aux

aux

root

det

det

dobj

case

det

nmod

punct

The cat could have chased all the dogs down the street .

DET NOUN AUX AUX VERB DET DET NOUN ADP DET NOUN PUNCT

det

nsubj

aux

aux

root

det

det

dobj

case

det

nmod

The cat could have chased all the dogs down the street .

DET NOUN AUX AUX VERB DET DET NOUN ADP DET NOUN PUNCT

nsubj

root

dobj

nmod

2

• Content words are linked by grammatical relations

The cat could have chased all the dogs down the street .
DET NOUN AUX AUX VERB DET DET NOUN ADP DET NOUN PUNCT

det

nsubj

aux

aux

root

det

det

obj

case

det

obl

punct

The cat could have chased all the dogs down the street .
DET NOUN AUX AUX VERB DET DET NOUN ADP DET NOUN PUNCT

det

nsubj

aux

aux

root

det

det

obj

case

det

obl

The cat could have chased all the dogs down the street .
DET NOUN AUX AUX VERB DET DET NOUN ADP DET NOUN PUNCT

nsubj

root

obj

obl

2

Syntax

The cat could have chased all the dogs down the street .

DET NOUN AUX AUX VERB DET DET NOUN ADP DET NOUN PUNCT

det

nsubj

aux

aux

root

det

det

dobj

case

det

nmod

punct

The cat could have chased all the dogs down the street .

DET NOUN AUX AUX VERB DET DET NOUN ADP DET NOUN PUNCT

det

nsubj

aux

aux

root

det

det

dobj

case

det

nmod

The cat could have chased all the dogs down the street .

DET NOUN AUX AUX VERB DET DET NOUN ADP DET NOUN PUNCT

nsubj

root

dobj

nmod

2

• Content words are linked by grammatical relations

• Function words attach to the content word they modify

The cat could have chased all the dogs down the street .
DET NOUN AUX AUX VERB DET DET NOUN ADP DET NOUN PUNCT

det

nsubj

aux

aux

root

det

det

obj

case

det

obl

punct

The cat could have chased all the dogs down the street .
DET NOUN AUX AUX VERB DET DET NOUN ADP DET NOUN PUNCT

det

nsubj

aux

aux

root

det

det

obj

case

det

obl

The cat could have chased all the dogs down the street .
DET NOUN AUX AUX VERB DET DET NOUN ADP DET NOUN PUNCT

nsubj

root

obj

obl

2

Syntax

The cat could have chased all the dogs down the street .

DET NOUN AUX AUX VERB DET DET NOUN ADP DET NOUN PUNCT

det

nsubj

aux

aux

root

det

det

dobj

case

det

nmod

punct

The cat could have chased all the dogs down the street .

DET NOUN AUX AUX VERB DET DET NOUN ADP DET NOUN PUNCT

det

nsubj

aux

aux

root

det

det

dobj

case

det

nmod

The cat could have chased all the dogs down the street .

DET NOUN AUX AUX VERB DET DET NOUN ADP DET NOUN PUNCT

nsubj

root

dobj

nmod

2

• Content words are linked by grammatical relations

• Function words attach to the content word they modify

• Punctuation attach to head of phrase or clause

Syntax

The cat could have chased all the dogs down the street .

DET NOUN AUX AUX VERB DET DET NOUN ADP DET NOUN PUNCT

det

nsubj

aux

aux

root

det

det

dobj

case

det

nmod

punct

The cat could have chased all the dogs down the street .

DET NOUN AUX AUX VERB DET DET NOUN ADP DET NOUN PUNCT

det

nsubj

aux

aux

root

det

det

dobj

case

det

nmod

The cat could have chased all the dogs down the street .

DET NOUN AUX AUX VERB DET DET NOUN ADP DET NOUN PUNCT

nsubj

root

dobj

nmod

2

The cat could have chased all the dogs down the street .
DET NOUN AUX AUX VERB DET DET NOUN ADP DET NOUN PUNCT

det

nsubj

aux

aux

root

det

det

obj

case

det

obl

punct

The cat could have chased all the dogs down the street .
DET NOUN AUX AUX VERB DET DET NOUN ADP DET NOUN PUNCT

det

nsubj

aux

aux

root

det

det

obj

case

det

obl

The cat could have chased all the dogs down the street .
DET NOUN AUX AUX VERB DET DET NOUN ADP DET NOUN PUNCT

nsubj

root

obj

obl

2

Syntax
Nominal Clause Modifier

Word
Function

Word

Core  
Predicate Dep

nsubj
obj
iobj

csubj
ccomp
xcomp

Non-Core
Predicate Dep

obl
vocative

expl
dislocated

advcl
advmod*
discourse

aux
cop

mark

Nominal Dep
nmod
appos

nummod
acl amod

det
clf

case

Coordination MWE Loose Special Other

conj
cc

fixed
flat

compound

parataxis
list

orphan
goeswith

reparandum

punct
root
dep

UD v2.5

157 treebanks
90 languages

20 language families
Figure by Francis Tyers

CoNLL Shared Tasks 2017–18
Multilingual Parsing from Raw Text to Universal Dependencies

Figure by Filip Ginter

Three Case Studies
• Representing words – characters, words, parts of speech

• Adding deep contextualized word representations

• Probing deep contextualized word representations

Sara
Stymne

Aaron
Smith

Miryam
de Lhoneux

Artur
Kulmizev

Uppsala Parsing Group

LSTM
f

xthe

concat

LSTM
f

xbrown

concat

LSTM
f

xfox

concat

LSTM
f

xjumped

concat

LSTM
f

x⇤

concat

LSTM
b

s0
LSTM

b
s1

LSTM
b

s2
LSTM

b
s3

LSTM
b

s4

Vthe Vbrown Vfox Vjumped V⇤

MLP MLP MLP MLP

+

Figure 2: Illustration of the neural model scheme of the graph-based parser when calculating the score of a given parse
tree. The parse tree is depicted below the sentence. Each dependency arc in the sentence is scored using an MLP that
is fed the BiLSTM encoding of the words at the arc’s end points (the colors of the arcs correspond to colors of the
MLP inputs above), and the individual arc scores are summed to produce the final score. All the MLPs share the same
parameters. The figure depicts a single-layer BiLSTM, while in practice we use two layers. When parsing a sentence,
we compute scores for all possible n

2 arcs, and find the best scoring tree using a dynamic-programming algorithm.

scoring parse tree y in the space Y(s) of valid de-
pendency trees over s. In order to make the search
tractable, the scoring function is decomposed to the
sum of local scores for each part independently.

In this work, we focus on arc-factored graph
based approach presented in McDonald et al. (2005).
Arc-factored parsing decomposes the score of a tree
to the sum of the score of its head-modifier arcs
(h,m):

parse(s) = argmax
y2Y(s)

X

(h,m)2y

score
�
�(s, h,m)

�

Given the scores of the arcs the highest scoring pro-
jective tree can be efficiently found using Eisner’s
decoding algorithm (1996). McDonald et al. and
most subsequent work estimate the local score of an
arc by a linear model parameterized by a weight vec-
tor w, and a feature function �(s, h,m) assigning a
sparse feature vector for an arc linking modifier m
to head h. We follow Pei et al. (2015) and replace
the linear scoring function with an MLP.

The feature extractor �(s, h,m) is usually com-
plex, involving many elements (see Section 2.1).
In contrast, our feature extractor uses merely the
BiLSTM encoding of the head word and the mod-

ifier word:

�(s, h,m) = BIRNN(x1:n, h) � BIRNN(x1:n,m)

The final model is:

parse(s) = argmax
y2Y(s)

scoreglobal(s, y)

= argmax
y2Y(s)

X

(h,m)2y

score
�
�(s, h,m)

�

= argmax
y2Y(s)

X

(h,m)2y

MLP (vh � vm)

vi = BIRNN(x1:n, i)

The architecture is illustrated in Figure 2.

Training The training objective is to set the score
function such that correct tree y is scored above in-
correct ones. We use a margin-based objective (Mc-
Donald et al., 2005; LeCun et al., 2006), aiming to
maximize the margin between the score of the gold
tree y and the highest scoring incorrect tree y

0. We
define a hinge loss with respect to a gold tree y as:

321

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Simple and Accurate Dependency  
Parsing Using Bidirectional LSTM Feature Representation Networks. TACL 4: 313–327.

LSTM
f

xthe

concat

LSTM
f

xbrown

concat

LSTM
f

xfox

concat

LSTM
f

xjumped

concat

LSTM
f

x⇤

concat

LSTM
b

s0
LSTM

b
s1

LSTM
b

s2
LSTM

b
s3

LSTM
b

s4

Vthe Vbrown Vfox Vjumped V⇤

MLP MLP MLP MLP

+

Figure 2: Illustration of the neural model scheme of the graph-based parser when calculating the score of a given parse
tree. The parse tree is depicted below the sentence. Each dependency arc in the sentence is scored using an MLP that
is fed the BiLSTM encoding of the words at the arc’s end points (the colors of the arcs correspond to colors of the
MLP inputs above), and the individual arc scores are summed to produce the final score. All the MLPs share the same
parameters. The figure depicts a single-layer BiLSTM, while in practice we use two layers. When parsing a sentence,
we compute scores for all possible n

2 arcs, and find the best scoring tree using a dynamic-programming algorithm.

scoring parse tree y in the space Y(s) of valid de-
pendency trees over s. In order to make the search
tractable, the scoring function is decomposed to the
sum of local scores for each part independently.

In this work, we focus on arc-factored graph
based approach presented in McDonald et al. (2005).
Arc-factored parsing decomposes the score of a tree
to the sum of the score of its head-modifier arcs
(h,m):

parse(s) = argmax
y2Y(s)

X

(h,m)2y

score
�
�(s, h,m)

�

Given the scores of the arcs the highest scoring pro-
jective tree can be efficiently found using Eisner’s
decoding algorithm (1996). McDonald et al. and
most subsequent work estimate the local score of an
arc by a linear model parameterized by a weight vec-
tor w, and a feature function �(s, h,m) assigning a
sparse feature vector for an arc linking modifier m
to head h. We follow Pei et al. (2015) and replace
the linear scoring function with an MLP.

The feature extractor �(s, h,m) is usually com-
plex, involving many elements (see Section 2.1).
In contrast, our feature extractor uses merely the
BiLSTM encoding of the head word and the mod-

ifier word:

�(s, h,m) = BIRNN(x1:n, h) � BIRNN(x1:n,m)

The final model is:

parse(s) = argmax
y2Y(s)

scoreglobal(s, y)

= argmax
y2Y(s)

X

(h,m)2y

score
�
�(s, h,m)

�

= argmax
y2Y(s)

X

(h,m)2y

MLP (vh � vm)

vi = BIRNN(x1:n, i)

The architecture is illustrated in Figure 2.

Training The training objective is to set the score
function such that correct tree y is scored above in-
correct ones. We use a margin-based objective (Mc-
Donald et al., 2005; LeCun et al., 2006), aiming to
maximize the margin between the score of the gold
tree y and the highest scoring incorrect tree y

0. We
define a hinge loss with respect to a gold tree y as:

321

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Simple and Accurate Dependency  
Parsing Using Bidirectional LSTM Feature Representation Networks. TACL 4: 313–327.

LSTM
f

xthe

concat

LSTM
f

xbrown

concat

LSTM
f

xfox

concat

LSTM
f

xjumped

concat

LSTM
f

x⇤

concat

LSTM
b

s0
LSTM

b
s1

LSTM
b

s2
LSTM

b
s3

LSTM
b

s4

Vthe Vbrown Vfox Vjumped V⇤

MLP MLP MLP MLP

+

Figure 2: Illustration of the neural model scheme of the graph-based parser when calculating the score of a given parse
tree. The parse tree is depicted below the sentence. Each dependency arc in the sentence is scored using an MLP that
is fed the BiLSTM encoding of the words at the arc’s end points (the colors of the arcs correspond to colors of the
MLP inputs above), and the individual arc scores are summed to produce the final score. All the MLPs share the same
parameters. The figure depicts a single-layer BiLSTM, while in practice we use two layers. When parsing a sentence,
we compute scores for all possible n

2 arcs, and find the best scoring tree using a dynamic-programming algorithm.

scoring parse tree y in the space Y(s) of valid de-
pendency trees over s. In order to make the search
tractable, the scoring function is decomposed to the
sum of local scores for each part independently.

In this work, we focus on arc-factored graph
based approach presented in McDonald et al. (2005).
Arc-factored parsing decomposes the score of a tree
to the sum of the score of its head-modifier arcs
(h,m):

parse(s) = argmax
y2Y(s)

X

(h,m)2y

score
�
�(s, h,m)

�

Given the scores of the arcs the highest scoring pro-
jective tree can be efficiently found using Eisner’s
decoding algorithm (1996). McDonald et al. and
most subsequent work estimate the local score of an
arc by a linear model parameterized by a weight vec-
tor w, and a feature function �(s, h,m) assigning a
sparse feature vector for an arc linking modifier m
to head h. We follow Pei et al. (2015) and replace
the linear scoring function with an MLP.

The feature extractor �(s, h,m) is usually com-
plex, involving many elements (see Section 2.1).
In contrast, our feature extractor uses merely the
BiLSTM encoding of the head word and the mod-

ifier word:

�(s, h,m) = BIRNN(x1:n, h) � BIRNN(x1:n,m)

The final model is:

parse(s) = argmax
y2Y(s)

scoreglobal(s, y)

= argmax
y2Y(s)

X

(h,m)2y

score
�
�(s, h,m)

�

= argmax
y2Y(s)

X

(h,m)2y

MLP (vh � vm)

vi = BIRNN(x1:n, i)

The architecture is illustrated in Figure 2.

Training The training objective is to set the score
function such that correct tree y is scored above in-
correct ones. We use a margin-based objective (Mc-
Donald et al., 2005; LeCun et al., 2006), aiming to
maximize the margin between the score of the gold
tree y and the highest scoring incorrect tree y

0. We
define a hinge loss with respect to a gold tree y as:

321

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Simple and Accurate Dependency  
Parsing Using Bidirectional LSTM Feature Representation Networks. TACL 4: 313–327.

LSTM
f

xthe

concat

LSTM
f

xbrown

concat

LSTM
f

xfox

concat

LSTM
f

xjumped

concat

LSTM
f

x⇤

concat

LSTM
b

s0
LSTM

b
s1

LSTM
b

s2
LSTM

b
s3

LSTM
b

s4

Vthe Vbrown Vfox Vjumped V⇤

MLP MLP MLP MLP

+

Figure 2: Illustration of the neural model scheme of the graph-based parser when calculating the score of a given parse
tree. The parse tree is depicted below the sentence. Each dependency arc in the sentence is scored using an MLP that
is fed the BiLSTM encoding of the words at the arc’s end points (the colors of the arcs correspond to colors of the
MLP inputs above), and the individual arc scores are summed to produce the final score. All the MLPs share the same
parameters. The figure depicts a single-layer BiLSTM, while in practice we use two layers. When parsing a sentence,
we compute scores for all possible n

2 arcs, and find the best scoring tree using a dynamic-programming algorithm.

scoring parse tree y in the space Y(s) of valid de-
pendency trees over s. In order to make the search
tractable, the scoring function is decomposed to the
sum of local scores for each part independently.

In this work, we focus on arc-factored graph
based approach presented in McDonald et al. (2005).
Arc-factored parsing decomposes the score of a tree
to the sum of the score of its head-modifier arcs
(h,m):

parse(s) = argmax
y2Y(s)

X

(h,m)2y

score
�
�(s, h,m)

�

Given the scores of the arcs the highest scoring pro-
jective tree can be efficiently found using Eisner’s
decoding algorithm (1996). McDonald et al. and
most subsequent work estimate the local score of an
arc by a linear model parameterized by a weight vec-
tor w, and a feature function �(s, h,m) assigning a
sparse feature vector for an arc linking modifier m
to head h. We follow Pei et al. (2015) and replace
the linear scoring function with an MLP.

The feature extractor �(s, h,m) is usually com-
plex, involving many elements (see Section 2.1).
In contrast, our feature extractor uses merely the
BiLSTM encoding of the head word and the mod-

ifier word:

�(s, h,m) = BIRNN(x1:n, h) � BIRNN(x1:n,m)

The final model is:

parse(s) = argmax
y2Y(s)

scoreglobal(s, y)

= argmax
y2Y(s)

X

(h,m)2y

score
�
�(s, h,m)

�

= argmax
y2Y(s)

X

(h,m)2y

MLP (vh � vm)

vi = BIRNN(x1:n, i)

The architecture is illustrated in Figure 2.

Training The training objective is to set the score
function such that correct tree y is scored above in-
correct ones. We use a margin-based objective (Mc-
Donald et al., 2005; LeCun et al., 2006), aiming to
maximize the margin between the score of the gold
tree y and the highest scoring incorrect tree y

0. We
define a hinge loss with respect to a gold tree y as:

321

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Simple and Accurate Dependency  
Parsing Using Bidirectional LSTM Feature Representation Networks. TACL 4: 313–327.

LSTM
f

xthe

concat

LSTM
f

xbrown

concat

LSTM
f

xfox

concat

LSTM
f

xjumped

concat

LSTM
f

x⇤

concat

LSTM
b

s0
LSTM

b
s1

LSTM
b

s2
LSTM

b
s3

LSTM
b

s4

Vthe Vbrown Vfox Vjumped V⇤

MLP MLP MLP MLP

+

Figure 2: Illustration of the neural model scheme of the graph-based parser when calculating the score of a given parse
tree. The parse tree is depicted below the sentence. Each dependency arc in the sentence is scored using an MLP that
is fed the BiLSTM encoding of the words at the arc’s end points (the colors of the arcs correspond to colors of the
MLP inputs above), and the individual arc scores are summed to produce the final score. All the MLPs share the same
parameters. The figure depicts a single-layer BiLSTM, while in practice we use two layers. When parsing a sentence,
we compute scores for all possible n

2 arcs, and find the best scoring tree using a dynamic-programming algorithm.

scoring parse tree y in the space Y(s) of valid de-
pendency trees over s. In order to make the search
tractable, the scoring function is decomposed to the
sum of local scores for each part independently.

In this work, we focus on arc-factored graph
based approach presented in McDonald et al. (2005).
Arc-factored parsing decomposes the score of a tree
to the sum of the score of its head-modifier arcs
(h,m):

parse(s) = argmax
y2Y(s)

X

(h,m)2y

score
�
�(s, h,m)

�

Given the scores of the arcs the highest scoring pro-
jective tree can be efficiently found using Eisner’s
decoding algorithm (1996). McDonald et al. and
most subsequent work estimate the local score of an
arc by a linear model parameterized by a weight vec-
tor w, and a feature function �(s, h,m) assigning a
sparse feature vector for an arc linking modifier m
to head h. We follow Pei et al. (2015) and replace
the linear scoring function with an MLP.

The feature extractor �(s, h,m) is usually com-
plex, involving many elements (see Section 2.1).
In contrast, our feature extractor uses merely the
BiLSTM encoding of the head word and the mod-

ifier word:

�(s, h,m) = BIRNN(x1:n, h) � BIRNN(x1:n,m)

The final model is:

parse(s) = argmax
y2Y(s)

scoreglobal(s, y)

= argmax
y2Y(s)

X

(h,m)2y

score
�
�(s, h,m)

�

= argmax
y2Y(s)

X

(h,m)2y

MLP (vh � vm)

vi = BIRNN(x1:n, i)

The architecture is illustrated in Figure 2.

Training The training objective is to set the score
function such that correct tree y is scored above in-
correct ones. We use a margin-based objective (Mc-
Donald et al., 2005; LeCun et al., 2006), aiming to
maximize the margin between the score of the gold
tree y and the highest scoring incorrect tree y

0. We
define a hinge loss with respect to a gold tree y as:

321

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Simple and Accurate Dependency  
Parsing Using Bidirectional LSTM Feature Representation Networks. TACL 4: 313–327.

Representing Words

• How do parsers benefit from pre-trained word
embeddings, character models and part-of-speech tags?

• Are the techniques complementary or redundant?

• How do results vary across word frequencies, word
categories and languages?

Aaron Smith, Miryam de Lhoneux, Sara Stymne, and Joakim Nivre. 2018.  
An Investigation of the Interactions between Pre-Trained Word Embeddings,  

Character Models and PoS Tags in Dependency Parsing. In Proceedings of EMNLP.

Experimental Setup

LSTM
f

xthe

concat

LSTM
f

xbrown

concat

LSTM
f

xfox

concat

LSTM
f

xjumped

concat

LSTM
f

x⇤

concat

LSTM
b

s0
LSTM

b
s1

LSTM
b

s2
LSTM

b
s3

LSTM
b

s4

Vthe Vbrown Vfox Vjumped V⇤

MLP MLP MLP MLP

+

Figure 2: Illustration of the neural model scheme of the graph-based parser when calculating the score of a given parse
tree. The parse tree is depicted below the sentence. Each dependency arc in the sentence is scored using an MLP that
is fed the BiLSTM encoding of the words at the arc’s end points (the colors of the arcs correspond to colors of the
MLP inputs above), and the individual arc scores are summed to produce the final score. All the MLPs share the same
parameters. The figure depicts a single-layer BiLSTM, while in practice we use two layers. When parsing a sentence,
we compute scores for all possible n

2 arcs, and find the best scoring tree using a dynamic-programming algorithm.

scoring parse tree y in the space Y(s) of valid de-
pendency trees over s. In order to make the search
tractable, the scoring function is decomposed to the
sum of local scores for each part independently.

In this work, we focus on arc-factored graph
based approach presented in McDonald et al. (2005).
Arc-factored parsing decomposes the score of a tree
to the sum of the score of its head-modifier arcs
(h,m):

parse(s) = argmax
y2Y(s)

X

(h,m)2y

score
�
�(s, h,m)

�

Given the scores of the arcs the highest scoring pro-
jective tree can be efficiently found using Eisner’s
decoding algorithm (1996). McDonald et al. and
most subsequent work estimate the local score of an
arc by a linear model parameterized by a weight vec-
tor w, and a feature function �(s, h,m) assigning a
sparse feature vector for an arc linking modifier m
to head h. We follow Pei et al. (2015) and replace
the linear scoring function with an MLP.

The feature extractor �(s, h,m) is usually com-
plex, involving many elements (see Section 2.1).
In contrast, our feature extractor uses merely the
BiLSTM encoding of the head word and the mod-

ifier word:

�(s, h,m) = BIRNN(x1:n, h) � BIRNN(x1:n,m)

The final model is:

parse(s) = argmax
y2Y(s)

scoreglobal(s, y)

= argmax
y2Y(s)

X

(h,m)2y

score
�
�(s, h,m)

�

= argmax
y2Y(s)

X

(h,m)2y

MLP (vh � vm)

vi = BIRNN(x1:n, i)

The architecture is illustrated in Figure 2.

Training The training objective is to set the score
function such that correct tree y is scored above in-
correct ones. We use a margin-based objective (Mc-
Donald et al., 2005; LeCun et al., 2006), aiming to
maximize the margin between the score of the gold
tree y and the highest scoring incorrect tree y

0. We
define a hinge loss with respect to a gold tree y as:

321

Experimental Setup

systematically varying the input representation xi of a word
wi. In the simplest model, xi is equal to a randomly initial-
ized word embedding er(wi):

xi = er(wi) (1)

In the most complex model, the randomly initialized em-
bedding is replaced by a pre-trained embedding et(wi),
which is concatenated with a character-based vector
BiLSTM(ch1:m), obtained by running a BiLSTM over the
characters ch1:m of wi, and an embedding e(pi) of the
word’s universal part-of-speech tag (Nivre et al., 2016):

xi = et(wi) ◦ BiLSTM(ch1:m) ◦ e(pi) (2)

In addition to the simplest and most complex models, we
test all combinations of one and two enhancements in ex-
periments on nine treebanks from Universal Dependen-
cies (Nivre et al., 2016) (v2.0): Ancient Greek (PROIEL),
Arabic (PADT), Chinese (GSD), English (EWT), Finnish
(TDT), Hebrew (HTB), Korean (GSD), Russian (GSD) and
Swedish (Talbanken). Our main findings can be summa-
rized as follows:

• For all techniques, improvements are largest for low-
frequency and open-class words and for morphologi-
cally rich languages.

• These improvements are largely redundant when the
techniques are used together.

• Character-based models are the most effective tech-
nique for low-frequency words.

• Part-of-speech tags are potentially effective for high-
frequency function words, but current state-of-the-art
taggers are not accurate enough to fully exploit this.

• Large character embeddings are helpful in morpholog-
ically rich languages, regardless of character set size.

4. Multi-Treebank Models
When training parsers, we sometimes want to combine (an-
notated) data from multiple, heterogeneous sources. In a
monolingual setting, we may have access to treebanks con-
taining different text genres or annotated in slightly differ-
ent styles. In a multilingual setting, we may want to com-
bine training data from multiple languages in order to im-
prove parsing accuracy for low-resource languages. Simply
concatenating the training sets, however, is unlikely to give
optimal performance and often results in degraded perfor-
mance. In recent work, we have explored the use of tree-
bank embeddings for parser training with heterogeneous
treebanks, generalizing the language embeddings of Am-
mar et al. (2016) to apply not only in multilingual but also
in monolingual settings.

The basic idea is to add a treebank embedding e(tbi) to
the input vector xi associated with each token wi:

xi = et(wi) ◦ BiLSTM(ch1:m) ◦ e(pi) ◦ e(tbi) (3)

At training time, the treebank embeddings allow the parser
to learn from multiple treebanks while remaining sensitive
to the idiosyncracies of each one. At parsing time, we can

select the treebank embedding that is most suitable for the
input text, whether in a particular language or belonging to
a particular text genre.

In Stymne et al. (2018), we show that treebank embed-
dings provide an effective way to combine multiple het-
erogeneous treebanks in the monolingual setting. In ex-
periments with 24 treebanks in 9 languages from Univer-
sal Dependencies v2.1, we observe an average increase in
labeled attachment score (LAS) by 3.5 percentage points
compared to a single-treebank model, and by 2.2 percent-
age points compared to simple concatenation of training
sets. The treebank embedding technique performs on par
with the fine-tuning method of Che et al. (2017) and Shi
et al. (2017) but is both simpler and more efficient, since
only one model is used at both training and parsing time.
Another advantage of the treebank embedding technique is
that it is very reliable and, unlike the simple concatenation,
never degrades performance compared to the single-model
baseline.

In Smith et al. (2018a), we show that treebank embed-
dings can be used both monolingually, to combine several
treebanks for a single language, and multilingually, mainly
for closely related languages, especially where one or more
of the languages have limited amounts of training data.
Moreover, the monolingual and the multilingual case can
be seamlessly integrated, so that we can train multilingual
models where one or more languages have multiple tree-
banks. In the 2018 CoNLL Shared Task, we use only 34
models to parse test sets from 84 treebanks and show that
this improves LAS by 1.66 percentage points on average
over all test sets, by 3.54 for test sets where the correspond-
ing training sets are characterized as “small” by the shared
task organizers, and by as much as 7.61 percentage points
for low-resource languages that have practically no training
data.

5. The 2018 CoNLL Shared Task
The Uppsala team participated in the 2018 CoNLL Shared
Task: Multilingual Parsing from Raw Text to Universal De-
pendencies (Zeman et al., 2018), using a pipeline system
consisting of three components. The first component is
a model for joint sentence and word segmentation, which
uses the BiRNN-CRF framework of Shao et al. (2018) to
predict sentence and word boundaries in the raw input text.
The second component is a part-of-speech tagger based on
Bohnet et al. (2018), which employs a sentence-based char-
acter model and also predicts morphological features. The
final component is UUParser, which takes the segmented
words and their predicted tags and features as input and
produces full dependency trees.

After evaluation on the official test sets, the Uppsala sys-
tem ranked 7th of 27 systems with respect to LAS, with a
macro-average F1 of 72.37, making it the highest ranking
transition-based parser in this year’s shared task. It also
reached the highest average score for word segmentation
(98.18), universal part-of-speech tags (90.91), and mor-
phological features (87.59). For more information about
the Uppsala system in the CoNLL shared tasks of 2017
and 2018, see de Lhoneux et al. (2017a) and Smith et al.
(2018a).

LSTM
f

xthe

concat

LSTM
f

xbrown

concat

LSTM
f

xfox

concat

LSTM
f

xjumped

concat

LSTM
f

x⇤

concat

LSTM
b

s0
LSTM

b
s1

LSTM
b

s2
LSTM

b
s3

LSTM
b

s4

Vthe Vbrown Vfox Vjumped V⇤

MLP MLP MLP MLP

+

Figure 2: Illustration of the neural model scheme of the graph-based parser when calculating the score of a given parse
tree. The parse tree is depicted below the sentence. Each dependency arc in the sentence is scored using an MLP that
is fed the BiLSTM encoding of the words at the arc’s end points (the colors of the arcs correspond to colors of the
MLP inputs above), and the individual arc scores are summed to produce the final score. All the MLPs share the same
parameters. The figure depicts a single-layer BiLSTM, while in practice we use two layers. When parsing a sentence,
we compute scores for all possible n

2 arcs, and find the best scoring tree using a dynamic-programming algorithm.

scoring parse tree y in the space Y(s) of valid de-
pendency trees over s. In order to make the search
tractable, the scoring function is decomposed to the
sum of local scores for each part independently.

In this work, we focus on arc-factored graph
based approach presented in McDonald et al. (2005).
Arc-factored parsing decomposes the score of a tree
to the sum of the score of its head-modifier arcs
(h,m):

parse(s) = argmax
y2Y(s)

X

(h,m)2y

score
�
�(s, h,m)

�

Given the scores of the arcs the highest scoring pro-
jective tree can be efficiently found using Eisner’s
decoding algorithm (1996). McDonald et al. and
most subsequent work estimate the local score of an
arc by a linear model parameterized by a weight vec-
tor w, and a feature function �(s, h,m) assigning a
sparse feature vector for an arc linking modifier m
to head h. We follow Pei et al. (2015) and replace
the linear scoring function with an MLP.

The feature extractor �(s, h,m) is usually com-
plex, involving many elements (see Section 2.1).
In contrast, our feature extractor uses merely the
BiLSTM encoding of the head word and the mod-

ifier word:

�(s, h,m) = BIRNN(x1:n, h) � BIRNN(x1:n,m)

The final model is:

parse(s) = argmax
y2Y(s)

scoreglobal(s, y)

= argmax
y2Y(s)

X

(h,m)2y

score
�
�(s, h,m)

�

= argmax
y2Y(s)

X

(h,m)2y

MLP (vh � vm)

vi = BIRNN(x1:n, i)

The architecture is illustrated in Figure 2.

Training The training objective is to set the score
function such that correct tree y is scored above in-
correct ones. We use a margin-based objective (Mc-
Donald et al., 2005; LeCun et al., 2006), aiming to
maximize the margin between the score of the gold
tree y and the highest scoring incorrect tree y

0. We
define a hinge loss with respect to a gold tree y as:

321

Experimental Setup

systematically varying the input representation xi of a word
wi. In the simplest model, xi is equal to a randomly initial-
ized word embedding er(wi):

xi = er(wi) (1)

In the most complex model, the randomly initialized em-
bedding is replaced by a pre-trained embedding et(wi),
which is concatenated with a character-based vector
BiLSTM(ch1:m), obtained by running a BiLSTM over the
characters ch1:m of wi, and an embedding e(pi) of the
word’s universal part-of-speech tag (Nivre et al., 2016):

xi = et(wi) ◦ BiLSTM(ch1:m) ◦ e(pi) (2)

In addition to the simplest and most complex models, we
test all combinations of one and two enhancements in ex-
periments on nine treebanks from Universal Dependen-
cies (Nivre et al., 2016) (v2.0): Ancient Greek (PROIEL),
Arabic (PADT), Chinese (GSD), English (EWT), Finnish
(TDT), Hebrew (HTB), Korean (GSD), Russian (GSD) and
Swedish (Talbanken). Our main findings can be summa-
rized as follows:

• For all techniques, improvements are largest for low-
frequency and open-class words and for morphologi-
cally rich languages.

• These improvements are largely redundant when the
techniques are used together.

• Character-based models are the most effective tech-
nique for low-frequency words.

• Part-of-speech tags are potentially effective for high-
frequency function words, but current state-of-the-art
taggers are not accurate enough to fully exploit this.

• Large character embeddings are helpful in morpholog-
ically rich languages, regardless of character set size.

4. Multi-Treebank Models
When training parsers, we sometimes want to combine (an-
notated) data from multiple, heterogeneous sources. In a
monolingual setting, we may have access to treebanks con-
taining different text genres or annotated in slightly differ-
ent styles. In a multilingual setting, we may want to com-
bine training data from multiple languages in order to im-
prove parsing accuracy for low-resource languages. Simply
concatenating the training sets, however, is unlikely to give
optimal performance and often results in degraded perfor-
mance. In recent work, we have explored the use of tree-
bank embeddings for parser training with heterogeneous
treebanks, generalizing the language embeddings of Am-
mar et al. (2016) to apply not only in multilingual but also
in monolingual settings.

The basic idea is to add a treebank embedding e(tbi) to
the input vector xi associated with each token wi:

xi = et(wi) ◦ BiLSTM(ch1:m) ◦ e(pi) ◦ e(tbi) (3)

At training time, the treebank embeddings allow the parser
to learn from multiple treebanks while remaining sensitive
to the idiosyncracies of each one. At parsing time, we can

select the treebank embedding that is most suitable for the
input text, whether in a particular language or belonging to
a particular text genre.

In Stymne et al. (2018), we show that treebank embed-
dings provide an effective way to combine multiple het-
erogeneous treebanks in the monolingual setting. In ex-
periments with 24 treebanks in 9 languages from Univer-
sal Dependencies v2.1, we observe an average increase in
labeled attachment score (LAS) by 3.5 percentage points
compared to a single-treebank model, and by 2.2 percent-
age points compared to simple concatenation of training
sets. The treebank embedding technique performs on par
with the fine-tuning method of Che et al. (2017) and Shi
et al. (2017) but is both simpler and more efficient, since
only one model is used at both training and parsing time.
Another advantage of the treebank embedding technique is
that it is very reliable and, unlike the simple concatenation,
never degrades performance compared to the single-model
baseline.

In Smith et al. (2018a), we show that treebank embed-
dings can be used both monolingually, to combine several
treebanks for a single language, and multilingually, mainly
for closely related languages, especially where one or more
of the languages have limited amounts of training data.
Moreover, the monolingual and the multilingual case can
be seamlessly integrated, so that we can train multilingual
models where one or more languages have multiple tree-
banks. In the 2018 CoNLL Shared Task, we use only 34
models to parse test sets from 84 treebanks and show that
this improves LAS by 1.66 percentage points on average
over all test sets, by 3.54 for test sets where the correspond-
ing training sets are characterized as “small” by the shared
task organizers, and by as much as 7.61 percentage points
for low-resource languages that have practically no training
data.

5. The 2018 CoNLL Shared Task
The Uppsala team participated in the 2018 CoNLL Shared
Task: Multilingual Parsing from Raw Text to Universal De-
pendencies (Zeman et al., 2018), using a pipeline system
consisting of three components. The first component is
a model for joint sentence and word segmentation, which
uses the BiRNN-CRF framework of Shao et al. (2018) to
predict sentence and word boundaries in the raw input text.
The second component is a part-of-speech tagger based on
Bohnet et al. (2018), which employs a sentence-based char-
acter model and also predicts morphological features. The
final component is UUParser, which takes the segmented
words and their predicted tags and features as input and
produces full dependency trees.

After evaluation on the official test sets, the Uppsala sys-
tem ranked 7th of 27 systems with respect to LAS, with a
macro-average F1 of 72.37, making it the highest ranking
transition-based parser in this year’s shared task. It also
reached the highest average score for word segmentation
(98.18), universal part-of-speech tags (90.91), and mor-
phological features (87.59). For more information about
the Uppsala system in the CoNLL shared tasks of 2017
and 2018, see de Lhoneux et al. (2017a) and Smith et al.
(2018a).

systematically varying the input representation xi of a word
wi. In the simplest model, xi is equal to a randomly initial-
ized word embedding er(wi):

xi = er(wi) (1)

In the most complex model, the randomly initialized em-
bedding is replaced by a pre-trained embedding et(wi),
which is concatenated with a character-based vector
BiLSTM(ch1:m), obtained by running a BiLSTM over the
characters ch1:m of wi, and an embedding e(pi) of the
word’s universal part-of-speech tag (Nivre et al., 2016):

xi = et(wi) ◦ BiLSTM(ch1:m) ◦ e(pi) (2)

In addition to the simplest and most complex models, we
test all combinations of one and two enhancements in ex-
periments on nine treebanks from Universal Dependen-
cies (Nivre et al., 2016) (v2.0): Ancient Greek (PROIEL),
Arabic (PADT), Chinese (GSD), English (EWT), Finnish
(TDT), Hebrew (HTB), Korean (GSD), Russian (GSD) and
Swedish (Talbanken). Our main findings can be summa-
rized as follows:

• For all techniques, improvements are largest for low-
frequency and open-class words and for morphologi-
cally rich languages.

• These improvements are largely redundant when the
techniques are used together.

• Character-based models are the most effective tech-
nique for low-frequency words.

• Part-of-speech tags are potentially effective for high-
frequency function words, but current state-of-the-art
taggers are not accurate enough to fully exploit this.

• Large character embeddings are helpful in morpholog-
ically rich languages, regardless of character set size.

4. Multi-Treebank Models
When training parsers, we sometimes want to combine (an-
notated) data from multiple, heterogeneous sources. In a
monolingual setting, we may have access to treebanks con-
taining different text genres or annotated in slightly differ-
ent styles. In a multilingual setting, we may want to com-
bine training data from multiple languages in order to im-
prove parsing accuracy for low-resource languages. Simply
concatenating the training sets, however, is unlikely to give
optimal performance and often results in degraded perfor-
mance. In recent work, we have explored the use of tree-
bank embeddings for parser training with heterogeneous
treebanks, generalizing the language embeddings of Am-
mar et al. (2016) to apply not only in multilingual but also
in monolingual settings.

The basic idea is to add a treebank embedding e(tbi) to
the input vector xi associated with each token wi:

xi = et(wi) ◦ BiLSTM(ch1:m) ◦ e(pi) ◦ e(tbi) (3)

At training time, the treebank embeddings allow the parser
to learn from multiple treebanks while remaining sensitive
to the idiosyncracies of each one. At parsing time, we can

select the treebank embedding that is most suitable for the
input text, whether in a particular language or belonging to
a particular text genre.

In Stymne et al. (2018), we show that treebank embed-
dings provide an effective way to combine multiple het-
erogeneous treebanks in the monolingual setting. In ex-
periments with 24 treebanks in 9 languages from Univer-
sal Dependencies v2.1, we observe an average increase in
labeled attachment score (LAS) by 3.5 percentage points
compared to a single-treebank model, and by 2.2 percent-
age points compared to simple concatenation of training
sets. The treebank embedding technique performs on par
with the fine-tuning method of Che et al. (2017) and Shi
et al. (2017) but is both simpler and more efficient, since
only one model is used at both training and parsing time.
Another advantage of the treebank embedding technique is
that it is very reliable and, unlike the simple concatenation,
never degrades performance compared to the single-model
baseline.

In Smith et al. (2018a), we show that treebank embed-
dings can be used both monolingually, to combine several
treebanks for a single language, and multilingually, mainly
for closely related languages, especially where one or more
of the languages have limited amounts of training data.
Moreover, the monolingual and the multilingual case can
be seamlessly integrated, so that we can train multilingual
models where one or more languages have multiple tree-
banks. In the 2018 CoNLL Shared Task, we use only 34
models to parse test sets from 84 treebanks and show that
this improves LAS by 1.66 percentage points on average
over all test sets, by 3.54 for test sets where the correspond-
ing training sets are characterized as “small” by the shared
task organizers, and by as much as 7.61 percentage points
for low-resource languages that have practically no training
data.

5. The 2018 CoNLL Shared Task
The Uppsala team participated in the 2018 CoNLL Shared
Task: Multilingual Parsing from Raw Text to Universal De-
pendencies (Zeman et al., 2018), using a pipeline system
consisting of three components. The first component is
a model for joint sentence and word segmentation, which
uses the BiRNN-CRF framework of Shao et al. (2018) to
predict sentence and word boundaries in the raw input text.
The second component is a part-of-speech tagger based on
Bohnet et al. (2018), which employs a sentence-based char-
acter model and also predicts morphological features. The
final component is UUParser, which takes the segmented
words and their predicted tags and features as input and
produces full dependency trees.

After evaluation on the official test sets, the Uppsala sys-
tem ranked 7th of 27 systems with respect to LAS, with a
macro-average F1 of 72.37, making it the highest ranking
transition-based parser in this year’s shared task. It also
reached the highest average score for word segmentation
(98.18), universal part-of-speech tags (90.91), and mor-
phological features (87.59). For more information about
the Uppsala system in the CoNLL shared tasks of 2017
and 2018, see de Lhoneux et al. (2017a) and Smith et al.
(2018a).

LSTM
f

xthe

concat

LSTM
f

xbrown

concat

LSTM
f

xfox

concat

LSTM
f

xjumped

concat

LSTM
f

x⇤

concat

LSTM
b

s0
LSTM

b
s1

LSTM
b

s2
LSTM

b
s3

LSTM
b

s4

Vthe Vbrown Vfox Vjumped V⇤

MLP MLP MLP MLP

+

Figure 2: Illustration of the neural model scheme of the graph-based parser when calculating the score of a given parse
tree. The parse tree is depicted below the sentence. Each dependency arc in the sentence is scored using an MLP that
is fed the BiLSTM encoding of the words at the arc’s end points (the colors of the arcs correspond to colors of the
MLP inputs above), and the individual arc scores are summed to produce the final score. All the MLPs share the same
parameters. The figure depicts a single-layer BiLSTM, while in practice we use two layers. When parsing a sentence,
we compute scores for all possible n

2 arcs, and find the best scoring tree using a dynamic-programming algorithm.

scoring parse tree y in the space Y(s) of valid de-
pendency trees over s. In order to make the search
tractable, the scoring function is decomposed to the
sum of local scores for each part independently.

In this work, we focus on arc-factored graph
based approach presented in McDonald et al. (2005).
Arc-factored parsing decomposes the score of a tree
to the sum of the score of its head-modifier arcs
(h,m):

parse(s) = argmax
y2Y(s)

X

(h,m)2y

score
�
�(s, h,m)

�

Given the scores of the arcs the highest scoring pro-
jective tree can be efficiently found using Eisner’s
decoding algorithm (1996). McDonald et al. and
most subsequent work estimate the local score of an
arc by a linear model parameterized by a weight vec-
tor w, and a feature function �(s, h,m) assigning a
sparse feature vector for an arc linking modifier m
to head h. We follow Pei et al. (2015) and replace
the linear scoring function with an MLP.

The feature extractor �(s, h,m) is usually com-
plex, involving many elements (see Section 2.1).
In contrast, our feature extractor uses merely the
BiLSTM encoding of the head word and the mod-

ifier word:

�(s, h,m) = BIRNN(x1:n, h) � BIRNN(x1:n,m)

The final model is:

parse(s) = argmax
y2Y(s)

scoreglobal(s, y)

= argmax
y2Y(s)

X

(h,m)2y

score
�
�(s, h,m)

�

= argmax
y2Y(s)

X

(h,m)2y

MLP (vh � vm)

vi = BIRNN(x1:n, i)

The architecture is illustrated in Figure 2.

Training The training objective is to set the score
function such that correct tree y is scored above in-
correct ones. We use a margin-based objective (Mc-
Donald et al., 2005; LeCun et al., 2006), aiming to
maximize the margin between the score of the gold
tree y and the highest scoring incorrect tree y

0. We
define a hinge loss with respect to a gold tree y as:

321

Results
Pre-TrainedWordEmbeddings,Character
ModelsandPOSTags inDependencyParsing
Aaron Smith*, Miryam de Lhoneux, Sara Stymne, and Joakim Nivre

Research Questions

• How do dependency parsers benefit from
– pre-trained word embeddings (+ext),
– character models (+char),
– part-of-speech tags (+pos)?

• Are the techniques complementary or
redundant when used together?

• How does the impact vary across word
frequencies, word categories, and languages?

Parsing Architecture

LSTM f

LSTM b

LSTM f

LSTM b

LSTM f

LSTM b

concat concat concat concat

LSTM f

LSTM b

MLP

concat

LSTM f

LSTM b

XX

Vthe Vfox Vjumped Vroot

X

Vbrown

X the X brown fox jumped root

the brown fox

jumped root

STACK

BUFFER

(score(LEFT−ARC),score(RIGHT−ARC),score(SWAP),score(SHIFT))

xi = e(wi) ◦ BiLSTM(ch1:m) ◦ p(wi)

UD 2.0 Data

Treebank Sentences TTR Chars
Ancient Greek 14864 1019 0.15 179
Arabic 6075 909 0.10 105
Chinese 3997 500 0.16 3571
English 12534 2002 0.07 108
Finnish 12217 1364 0.26 244
Hebrew 5241 484 0.11 53
Korean 4400 950 0.46 1730
Russian 3850 579 0.30 189
Swedish 4303 504 0.16 86

Aggregate Results (LAS)

baseline 67.7 combined 81.0
+ext 76.1 −ext 79.9
+char 78.3 −char 79.2
+pos 75.9 −pos 80.3

Results by Frequency

* Now at Google Switzerland

Results by POS Tag

Character Embedding Size

0 24 100 500
Chinese 76.0 76.1 75.9 75.8
Finnish 81.9 83.7 83.8 84.7
Korean 70.1 78.0 78.2 79.4
Russian 82.0 81.4 81.5 82.5

Results by Language

Gold POS Tags

Main Findings

• For all techniques, improvements are largest
for low-frequency and open-class words and
for morphologically rich languages.

• These improvements are largely redundant
when the techniques are used together.

• Character-based models are the most
effective technique for low-frequency words.

• Part-of-speech tags are potentially very
effective for high-frequency function words,
but current state-of-the-art taggers are not
accurate enough to take full advantage of
this.

• Large character embeddings are helpful for
morphologically rich languages, regardless of
character set size.

Pre-TrainedWordEmbeddings,Character
ModelsandPOSTags inDependencyParsing
Aaron Smith*, Miryam de Lhoneux, Sara Stymne, and Joakim Nivre

Research Questions

• How do dependency parsers benefit from
– pre-trained word embeddings (+ext),
– character models (+char),
– part-of-speech tags (+pos)?

• Are the techniques complementary or
redundant when used together?

• How does the impact vary across word
frequencies, word categories, and languages?

Parsing Architecture

LSTM f

LSTM b

LSTM f

LSTM b

LSTM f

LSTM b

concat concat concat concat

LSTM f

LSTM b

MLP

concat

LSTM f

LSTM b

XX

Vthe Vfox Vjumped Vroot

X

Vbrown

X the X brown fox jumped root

the brown fox

jumped root

STACK

BUFFER

(score(LEFT−ARC),score(RIGHT−ARC),score(SWAP),score(SHIFT))

xi = e(wi) ◦ BiLSTM(ch1:m) ◦ p(wi)

UD 2.0 Data

Treebank Sentences TTR Chars
Ancient Greek 14864 1019 0.15 179
Arabic 6075 909 0.10 105
Chinese 3997 500 0.16 3571
English 12534 2002 0.07 108
Finnish 12217 1364 0.26 244
Hebrew 5241 484 0.11 53
Korean 4400 950 0.46 1730
Russian 3850 579 0.30 189
Swedish 4303 504 0.16 86

Aggregate Results (LAS)

baseline 67.7 combined 81.0
+ext 76.1 −ext 79.9
+char 78.3 −char 79.2
+pos 75.9 −pos 80.3

Results by Frequency

* Now at Google Switzerland

Results by POS Tag

Character Embedding Size

0 24 100 500
Chinese 76.0 76.1 75.9 75.8
Finnish 81.9 83.7 83.8 84.7
Korean 70.1 78.0 78.2 79.4
Russian 82.0 81.4 81.5 82.5

Results by Language

Gold POS Tags

Main Findings

• For all techniques, improvements are largest
for low-frequency and open-class words and
for morphologically rich languages.

• These improvements are largely redundant
when the techniques are used together.

• Character-based models are the most
effective technique for low-frequency words.

• Part-of-speech tags are potentially very
effective for high-frequency function words,
but current state-of-the-art taggers are not
accurate enough to take full advantage of
this.

• Large character embeddings are helpful for
morphologically rich languages, regardless of
character set size.

Results
Pre-TrainedWordEmbeddings,Character
ModelsandPOSTags inDependencyParsing
Aaron Smith*, Miryam de Lhoneux, Sara Stymne, and Joakim Nivre

Research Questions

• How do dependency parsers benefit from
– pre-trained word embeddings (+ext),
– character models (+char),
– part-of-speech tags (+pos)?

• Are the techniques complementary or
redundant when used together?

• How does the impact vary across word
frequencies, word categories, and languages?

Parsing Architecture

LSTM f

LSTM b

LSTM f

LSTM b

LSTM f

LSTM b

concat concat concat concat

LSTM f

LSTM b

MLP

concat

LSTM f

LSTM b

XX

Vthe Vfox Vjumped Vroot

X

Vbrown

X the X brown fox jumped root

the brown fox

jumped root

STACK

BUFFER

(score(LEFT−ARC),score(RIGHT−ARC),score(SWAP),score(SHIFT))

xi = e(wi) ◦ BiLSTM(ch1:m) ◦ p(wi)

UD 2.0 Data

Treebank Sentences TTR Chars
Ancient Greek 14864 1019 0.15 179
Arabic 6075 909 0.10 105
Chinese 3997 500 0.16 3571
English 12534 2002 0.07 108
Finnish 12217 1364 0.26 244
Hebrew 5241 484 0.11 53
Korean 4400 950 0.46 1730
Russian 3850 579 0.30 189
Swedish 4303 504 0.16 86

Aggregate Results (LAS)

baseline 67.7 combined 81.0
+ext 76.1 −ext 79.9
+char 78.3 −char 79.2
+pos 75.9 −pos 80.3

Results by Frequency

* Now at Google Switzerland

Results by POS Tag

Character Embedding Size

0 24 100 500
Chinese 76.0 76.1 75.9 75.8
Finnish 81.9 83.7 83.8 84.7
Korean 70.1 78.0 78.2 79.4
Russian 82.0 81.4 81.5 82.5

Results by Language

Gold POS Tags

Main Findings

• For all techniques, improvements are largest
for low-frequency and open-class words and
for morphologically rich languages.

• These improvements are largely redundant
when the techniques are used together.

• Character-based models are the most
effective technique for low-frequency words.

• Part-of-speech tags are potentially very
effective for high-frequency function words,
but current state-of-the-art taggers are not
accurate enough to take full advantage of
this.

• Large character embeddings are helpful for
morphologically rich languages, regardless of
character set size.

Pre-TrainedWordEmbeddings,Character
ModelsandPOSTags inDependencyParsing
Aaron Smith*, Miryam de Lhoneux, Sara Stymne, and Joakim Nivre

Research Questions

• How do dependency parsers benefit from
– pre-trained word embeddings (+ext),
– character models (+char),
– part-of-speech tags (+pos)?

• Are the techniques complementary or
redundant when used together?

• How does the impact vary across word
frequencies, word categories, and languages?

Parsing Architecture

LSTM f

LSTM b

LSTM f

LSTM b

LSTM f

LSTM b

concat concat concat concat

LSTM f

LSTM b

MLP

concat

LSTM f

LSTM b

XX

Vthe Vfox Vjumped Vroot

X

Vbrown

X the X brown fox jumped root

the brown fox

jumped root

STACK

BUFFER

(score(LEFT−ARC),score(RIGHT−ARC),score(SWAP),score(SHIFT))

xi = e(wi) ◦ BiLSTM(ch1:m) ◦ p(wi)

UD 2.0 Data

Treebank Sentences TTR Chars
Ancient Greek 14864 1019 0.15 179
Arabic 6075 909 0.10 105
Chinese 3997 500 0.16 3571
English 12534 2002 0.07 108
Finnish 12217 1364 0.26 244
Hebrew 5241 484 0.11 53
Korean 4400 950 0.46 1730
Russian 3850 579 0.30 189
Swedish 4303 504 0.16 86

Aggregate Results (LAS)

baseline 67.7 combined 81.0
+ext 76.1 −ext 79.9
+char 78.3 −char 79.2
+pos 75.9 −pos 80.3

Results by Frequency

* Now at Google Switzerland

Results by POS Tag

Character Embedding Size

0 24 100 500
Chinese 76.0 76.1 75.9 75.8
Finnish 81.9 83.7 83.8 84.7
Korean 70.1 78.0 78.2 79.4
Russian 82.0 81.4 81.5 82.5

Results by Language

Gold POS Tags

Main Findings

• For all techniques, improvements are largest
for low-frequency and open-class words and
for morphologically rich languages.

• These improvements are largely redundant
when the techniques are used together.

• Character-based models are the most
effective technique for low-frequency words.

• Part-of-speech tags are potentially very
effective for high-frequency function words,
but current state-of-the-art taggers are not
accurate enough to take full advantage of
this.

• Large character embeddings are helpful for
morphologically rich languages, regardless of
character set size.

Results
Pre-TrainedWordEmbeddings,Character
ModelsandPOSTags inDependencyParsing
Aaron Smith*, Miryam de Lhoneux, Sara Stymne, and Joakim Nivre

Research Questions

• How do dependency parsers benefit from
– pre-trained word embeddings (+ext),
– character models (+char),
– part-of-speech tags (+pos)?

• Are the techniques complementary or
redundant when used together?

• How does the impact vary across word
frequencies, word categories, and languages?

Parsing Architecture

LSTM f

LSTM b

LSTM f

LSTM b

LSTM f

LSTM b

concat concat concat concat

LSTM f

LSTM b

MLP

concat

LSTM f

LSTM b

XX

Vthe Vfox Vjumped Vroot

X

Vbrown

X the X brown fox jumped root

the brown fox

jumped root

STACK

BUFFER

(score(LEFT−ARC),score(RIGHT−ARC),score(SWAP),score(SHIFT))

xi = e(wi) ◦ BiLSTM(ch1:m) ◦ p(wi)

UD 2.0 Data

Treebank Sentences TTR Chars
Ancient Greek 14864 1019 0.15 179
Arabic 6075 909 0.10 105
Chinese 3997 500 0.16 3571
English 12534 2002 0.07 108
Finnish 12217 1364 0.26 244
Hebrew 5241 484 0.11 53
Korean 4400 950 0.46 1730
Russian 3850 579 0.30 189
Swedish 4303 504 0.16 86

Aggregate Results (LAS)

baseline 67.7 combined 81.0
+ext 76.1 −ext 79.9
+char 78.3 −char 79.2
+pos 75.9 −pos 80.3

Results by Frequency

* Now at Google Switzerland

Results by POS Tag

Character Embedding Size

0 24 100 500
Chinese 76.0 76.1 75.9 75.8
Finnish 81.9 83.7 83.8 84.7
Korean 70.1 78.0 78.2 79.4
Russian 82.0 81.4 81.5 82.5

Results by Language

Gold POS Tags

Main Findings

• For all techniques, improvements are largest
for low-frequency and open-class words and
for morphologically rich languages.

• These improvements are largely redundant
when the techniques are used together.

• Character-based models are the most
effective technique for low-frequency words.

• Part-of-speech tags are potentially very
effective for high-frequency function words,
but current state-of-the-art taggers are not
accurate enough to take full advantage of
this.

• Large character embeddings are helpful for
morphologically rich languages, regardless of
character set size.

Pre-TrainedWordEmbeddings,Character
ModelsandPOSTags inDependencyParsing
Aaron Smith*, Miryam de Lhoneux, Sara Stymne, and Joakim Nivre

Research Questions

• How do dependency parsers benefit from
– pre-trained word embeddings (+ext),
– character models (+char),
– part-of-speech tags (+pos)?

• Are the techniques complementary or
redundant when used together?

• How does the impact vary across word
frequencies, word categories, and languages?

Parsing Architecture

LSTM f

LSTM b

LSTM f

LSTM b

LSTM f

LSTM b

concat concat concat concat

LSTM f

LSTM b

MLP

concat

LSTM f

LSTM b

XX

Vthe Vfox Vjumped Vroot

X

Vbrown

X the X brown fox jumped root

the brown fox

jumped root

STACK

BUFFER

(score(LEFT−ARC),score(RIGHT−ARC),score(SWAP),score(SHIFT))

xi = e(wi) ◦ BiLSTM(ch1:m) ◦ p(wi)

UD 2.0 Data

Treebank Sentences TTR Chars
Ancient Greek 14864 1019 0.15 179
Arabic 6075 909 0.10 105
Chinese 3997 500 0.16 3571
English 12534 2002 0.07 108
Finnish 12217 1364 0.26 244
Hebrew 5241 484 0.11 53
Korean 4400 950 0.46 1730
Russian 3850 579 0.30 189
Swedish 4303 504 0.16 86

Aggregate Results (LAS)

baseline 67.7 combined 81.0
+ext 76.1 −ext 79.9
+char 78.3 −char 79.2
+pos 75.9 −pos 80.3

Results by Frequency

* Now at Google Switzerland

Results by POS Tag

Character Embedding Size

0 24 100 500
Chinese 76.0 76.1 75.9 75.8
Finnish 81.9 83.7 83.8 84.7
Korean 70.1 78.0 78.2 79.4
Russian 82.0 81.4 81.5 82.5

Results by Language

Gold POS Tags

Main Findings

• For all techniques, improvements are largest
for low-frequency and open-class words and
for morphologically rich languages.

• These improvements are largely redundant
when the techniques are used together.

• Character-based models are the most
effective technique for low-frequency words.

• Part-of-speech tags are potentially very
effective for high-frequency function words,
but current state-of-the-art taggers are not
accurate enough to take full advantage of
this.

• Large character embeddings are helpful for
morphologically rich languages, regardless of
character set size.

Results
Pre-TrainedWordEmbeddings,Character
ModelsandPOSTags inDependencyParsing
Aaron Smith*, Miryam de Lhoneux, Sara Stymne, and Joakim Nivre

Research Questions

• How do dependency parsers benefit from
– pre-trained word embeddings (+ext),
– character models (+char),
– part-of-speech tags (+pos)?

• Are the techniques complementary or
redundant when used together?

• How does the impact vary across word
frequencies, word categories, and languages?

Parsing Architecture

LSTM f

LSTM b

LSTM f

LSTM b

LSTM f

LSTM b

concat concat concat concat

LSTM f

LSTM b

MLP

concat

LSTM f

LSTM b

XX

Vthe Vfox Vjumped Vroot

X

Vbrown

X the X brown fox jumped root

the brown fox

jumped root

STACK

BUFFER

(score(LEFT−ARC),score(RIGHT−ARC),score(SWAP),score(SHIFT))

xi = e(wi) ◦ BiLSTM(ch1:m) ◦ p(wi)

UD 2.0 Data

Treebank Sentences TTR Chars
Ancient Greek 14864 1019 0.15 179
Arabic 6075 909 0.10 105
Chinese 3997 500 0.16 3571
English 12534 2002 0.07 108
Finnish 12217 1364 0.26 244
Hebrew 5241 484 0.11 53
Korean 4400 950 0.46 1730
Russian 3850 579 0.30 189
Swedish 4303 504 0.16 86

Aggregate Results (LAS)

baseline 67.7 combined 81.0
+ext 76.1 −ext 79.9
+char 78.3 −char 79.2
+pos 75.9 −pos 80.3

Results by Frequency

* Now at Google Switzerland

Results by POS Tag

Character Embedding Size

0 24 100 500
Chinese 76.0 76.1 75.9 75.8
Finnish 81.9 83.7 83.8 84.7
Korean 70.1 78.0 78.2 79.4
Russian 82.0 81.4 81.5 82.5

Results by Language

Gold POS Tags

Main Findings

• For all techniques, improvements are largest
for low-frequency and open-class words and
for morphologically rich languages.

• These improvements are largely redundant
when the techniques are used together.

• Character-based models are the most
effective technique for low-frequency words.

• Part-of-speech tags are potentially very
effective for high-frequency function words,
but current state-of-the-art taggers are not
accurate enough to take full advantage of
this.

• Large character embeddings are helpful for
morphologically rich languages, regardless of
character set size.

Pre-TrainedWordEmbeddings,Character
ModelsandPOSTags inDependencyParsing
Aaron Smith*, Miryam de Lhoneux, Sara Stymne, and Joakim Nivre

Research Questions

• How do dependency parsers benefit from
– pre-trained word embeddings (+ext),
– character models (+char),
– part-of-speech tags (+pos)?

• Are the techniques complementary or
redundant when used together?

• How does the impact vary across word
frequencies, word categories, and languages?

Parsing Architecture

LSTM f

LSTM b

LSTM f

LSTM b

LSTM f

LSTM b

concat concat concat concat

LSTM f

LSTM b

MLP

concat

LSTM f

LSTM b

XX

Vthe Vfox Vjumped Vroot

X

Vbrown

X the X brown fox jumped root

the brown fox

jumped root

STACK

BUFFER

(score(LEFT−ARC),score(RIGHT−ARC),score(SWAP),score(SHIFT))

xi = e(wi) ◦ BiLSTM(ch1:m) ◦ p(wi)

UD 2.0 Data

Treebank Sentences TTR Chars
Ancient Greek 14864 1019 0.15 179
Arabic 6075 909 0.10 105
Chinese 3997 500 0.16 3571
English 12534 2002 0.07 108
Finnish 12217 1364 0.26 244
Hebrew 5241 484 0.11 53
Korean 4400 950 0.46 1730
Russian 3850 579 0.30 189
Swedish 4303 504 0.16 86

Aggregate Results (LAS)

baseline 67.7 combined 81.0
+ext 76.1 −ext 79.9
+char 78.3 −char 79.2
+pos 75.9 −pos 80.3

Results by Frequency

* Now at Google Switzerland

Results by POS Tag

Character Embedding Size

0 24 100 500
Chinese 76.0 76.1 75.9 75.8
Finnish 81.9 83.7 83.8 84.7
Korean 70.1 78.0 78.2 79.4
Russian 82.0 81.4 81.5 82.5

Results by Language

Gold POS Tags

Main Findings

• For all techniques, improvements are largest
for low-frequency and open-class words and
for morphologically rich languages.

• These improvements are largely redundant
when the techniques are used together.

• Character-based models are the most
effective technique for low-frequency words.

• Part-of-speech tags are potentially very
effective for high-frequency function words,
but current state-of-the-art taggers are not
accurate enough to take full advantage of
this.

• Large character embeddings are helpful for
morphologically rich languages, regardless of
character set size.

Results by Frequency

Results by Frequency

Results by Frequency

Results by PoS Tags

Results by PoS Tags

Results by Language

Results by Language

Main Findings

• We see the largest improvements for low-frequency and
open-class words and for morphologically rich languages

• Techniques are mutually redundant, but character
models are the most effective for low-frequency words

• Part-of-speech tags are potentially effective for high-
frequency function words, but current taggers are not
accurate enough to realize this potential

A Tale of Two Parsers

• Transition-based and graph-based dependency parsers
are known to have distinctive error profiles

• Do these patterns persist in the presence of neural
network techniques?

• Do deep contextualized word representations benefit
transition-based parsers more than graph-based parsers?

Artur Kulmizev, Miryam de Lhoneux, Johannes Gontrum, Elena Fano and Joakim Nivre
2019. Deep Contextualized Word Embeddings in Transition-Based and Graph-Based

Dependency Parsing – A Tale of Two Parsers Revisited. In Proceedings of EMNLP.

Historical Background

Ryan McDonald and Joakim Nivre. 2007. Characterizing the Errors of Data-Driven
 Dependency Parsing Models. In Proceedings of EMNLP, pages 122–131.

Transition-Based
––

short sentences
short dependencies

nouns
core arguments

––
rich features

greedy decoding

better on

due to

Graph-Based
––

long sentences
long dependencies

verbs
main predicates

––
limited features
exact decoding

Historical Background

Ryan McDonald and Joakim Nivre. 2007. Characterizing the Errors of Data-Driven
 Dependency Parsing Models. In Proceedings of EMNLP, pages 122–131.

LSTM
f

xthe

concat

LSTM
f

xbrown

concat

LSTM
f

xfox

concat

LSTM
f

xjumped

concat

LSTM
f

x⇤

concat

LSTM
b

s0
LSTM

b
s1

LSTM
b

s2
LSTM

b
s3

LSTM
b

s4

Vthe Vbrown Vfox Vjumped V⇤

MLP MLP MLP MLP

+

Figure 2: Illustration of the neural model scheme of the graph-based parser when calculating the score of a given parse
tree. The parse tree is depicted below the sentence. Each dependency arc in the sentence is scored using an MLP that
is fed the BiLSTM encoding of the words at the arc’s end points (the colors of the arcs correspond to colors of the
MLP inputs above), and the individual arc scores are summed to produce the final score. All the MLPs share the same
parameters. The figure depicts a single-layer BiLSTM, while in practice we use two layers. When parsing a sentence,
we compute scores for all possible n

2 arcs, and find the best scoring tree using a dynamic-programming algorithm.

scoring parse tree y in the space Y(s) of valid de-
pendency trees over s. In order to make the search
tractable, the scoring function is decomposed to the
sum of local scores for each part independently.

In this work, we focus on arc-factored graph
based approach presented in McDonald et al. (2005).
Arc-factored parsing decomposes the score of a tree
to the sum of the score of its head-modifier arcs
(h,m):

parse(s) = argmax
y2Y(s)

X

(h,m)2y

score
�
�(s, h,m)

�

Given the scores of the arcs the highest scoring pro-
jective tree can be efficiently found using Eisner’s
decoding algorithm (1996). McDonald et al. and
most subsequent work estimate the local score of an
arc by a linear model parameterized by a weight vec-
tor w, and a feature function �(s, h,m) assigning a
sparse feature vector for an arc linking modifier m
to head h. We follow Pei et al. (2015) and replace
the linear scoring function with an MLP.

The feature extractor �(s, h,m) is usually com-
plex, involving many elements (see Section 2.1).
In contrast, our feature extractor uses merely the
BiLSTM encoding of the head word and the mod-

ifier word:

�(s, h,m) = BIRNN(x1:n, h) � BIRNN(x1:n,m)

The final model is:

parse(s) = argmax
y2Y(s)

scoreglobal(s, y)

= argmax
y2Y(s)

X

(h,m)2y

score
�
�(s, h,m)

�

= argmax
y2Y(s)

X

(h,m)2y

MLP (vh � vm)

vi = BIRNN(x1:n, i)

The architecture is illustrated in Figure 2.

Training The training objective is to set the score
function such that correct tree y is scored above in-
correct ones. We use a margin-based objective (Mc-
Donald et al., 2005; LeCun et al., 2006), aiming to
maximize the margin between the score of the gold
tree y and the highest scoring incorrect tree y

0. We
define a hinge loss with respect to a gold tree y as:

321

Experimental Setup

LSTM
f

xthe

concat

LSTM
f

xbrown

concat

LSTM
f

xfox

concat

LSTM
f

xjumped

concat

LSTM
f

x⇤

concat

LSTM
b

s0
LSTM

b
s1

LSTM
b

s2
LSTM

b
s3

LSTM
b

s4

Vthe Vbrown Vfox Vjumped V⇤

MLP MLP MLP MLP

+

Figure 2: Illustration of the neural model scheme of the graph-based parser when calculating the score of a given parse
tree. The parse tree is depicted below the sentence. Each dependency arc in the sentence is scored using an MLP that
is fed the BiLSTM encoding of the words at the arc’s end points (the colors of the arcs correspond to colors of the
MLP inputs above), and the individual arc scores are summed to produce the final score. All the MLPs share the same
parameters. The figure depicts a single-layer BiLSTM, while in practice we use two layers. When parsing a sentence,
we compute scores for all possible n

2 arcs, and find the best scoring tree using a dynamic-programming algorithm.

scoring parse tree y in the space Y(s) of valid de-
pendency trees over s. In order to make the search
tractable, the scoring function is decomposed to the
sum of local scores for each part independently.

In this work, we focus on arc-factored graph
based approach presented in McDonald et al. (2005).
Arc-factored parsing decomposes the score of a tree
to the sum of the score of its head-modifier arcs
(h,m):

parse(s) = argmax
y2Y(s)

X

(h,m)2y

score
�
�(s, h,m)

�

Given the scores of the arcs the highest scoring pro-
jective tree can be efficiently found using Eisner’s
decoding algorithm (1996). McDonald et al. and
most subsequent work estimate the local score of an
arc by a linear model parameterized by a weight vec-
tor w, and a feature function �(s, h,m) assigning a
sparse feature vector for an arc linking modifier m
to head h. We follow Pei et al. (2015) and replace
the linear scoring function with an MLP.

The feature extractor �(s, h,m) is usually com-
plex, involving many elements (see Section 2.1).
In contrast, our feature extractor uses merely the
BiLSTM encoding of the head word and the mod-

ifier word:

�(s, h,m) = BIRNN(x1:n, h) � BIRNN(x1:n,m)

The final model is:

parse(s) = argmax
y2Y(s)

scoreglobal(s, y)

= argmax
y2Y(s)

X

(h,m)2y

score
�
�(s, h,m)

�

= argmax
y2Y(s)

X

(h,m)2y

MLP (vh � vm)

vi = BIRNN(x1:n, i)

The architecture is illustrated in Figure 2.

Training The training objective is to set the score
function such that correct tree y is scored above in-
correct ones. We use a margin-based objective (Mc-
Donald et al., 2005; LeCun et al., 2006), aiming to
maximize the margin between the score of the gold
tree y and the highest scoring incorrect tree y

0. We
define a hinge loss with respect to a gold tree y as:

321

TR GR

LSTM
f

xthe

concat

LSTM
f

xbrown

concat

LSTM
f

xfox

concat

LSTM
f

xjumped

concat

LSTM
f

x⇤

concat

LSTM
b

s0
LSTM

b
s1

LSTM
b

s2
LSTM

b
s3

LSTM
b

s4

Vthe Vbrown Vfox Vjumped V⇤

MLP MLP MLP MLP

+

Figure 2: Illustration of the neural model scheme of the graph-based parser when calculating the score of a given parse
tree. The parse tree is depicted below the sentence. Each dependency arc in the sentence is scored using an MLP that
is fed the BiLSTM encoding of the words at the arc’s end points (the colors of the arcs correspond to colors of the
MLP inputs above), and the individual arc scores are summed to produce the final score. All the MLPs share the same
parameters. The figure depicts a single-layer BiLSTM, while in practice we use two layers. When parsing a sentence,
we compute scores for all possible n

2 arcs, and find the best scoring tree using a dynamic-programming algorithm.

scoring parse tree y in the space Y(s) of valid de-
pendency trees over s. In order to make the search
tractable, the scoring function is decomposed to the
sum of local scores for each part independently.

In this work, we focus on arc-factored graph
based approach presented in McDonald et al. (2005).
Arc-factored parsing decomposes the score of a tree
to the sum of the score of its head-modifier arcs
(h,m):

parse(s) = argmax
y2Y(s)

X

(h,m)2y

score
�
�(s, h,m)

�

Given the scores of the arcs the highest scoring pro-
jective tree can be efficiently found using Eisner’s
decoding algorithm (1996). McDonald et al. and
most subsequent work estimate the local score of an
arc by a linear model parameterized by a weight vec-
tor w, and a feature function �(s, h,m) assigning a
sparse feature vector for an arc linking modifier m
to head h. We follow Pei et al. (2015) and replace
the linear scoring function with an MLP.

The feature extractor �(s, h,m) is usually com-
plex, involving many elements (see Section 2.1).
In contrast, our feature extractor uses merely the
BiLSTM encoding of the head word and the mod-

ifier word:

�(s, h,m) = BIRNN(x1:n, h) � BIRNN(x1:n,m)

The final model is:

parse(s) = argmax
y2Y(s)

scoreglobal(s, y)

= argmax
y2Y(s)

X

(h,m)2y

score
�
�(s, h,m)

�

= argmax
y2Y(s)

X

(h,m)2y

MLP (vh � vm)

vi = BIRNN(x1:n, i)

The architecture is illustrated in Figure 2.

Training The training objective is to set the score
function such that correct tree y is scored above in-
correct ones. We use a margin-based objective (Mc-
Donald et al., 2005; LeCun et al., 2006), aiming to
maximize the margin between the score of the gold
tree y and the highest scoring incorrect tree y

0. We
define a hinge loss with respect to a gold tree y as:

321

Experimental Setup

LSTM
f

xthe

concat

LSTM
f

xbrown

concat

LSTM
f

xfox

concat

LSTM
f

xjumped

concat

LSTM
f

x⇤

concat

LSTM
b

s0
LSTM

b
s1

LSTM
b

s2
LSTM

b
s3

LSTM
b

s4

Vthe Vbrown Vfox Vjumped V⇤

MLP MLP MLP MLP

+

Figure 2: Illustration of the neural model scheme of the graph-based parser when calculating the score of a given parse
tree. The parse tree is depicted below the sentence. Each dependency arc in the sentence is scored using an MLP that
is fed the BiLSTM encoding of the words at the arc’s end points (the colors of the arcs correspond to colors of the
MLP inputs above), and the individual arc scores are summed to produce the final score. All the MLPs share the same
parameters. The figure depicts a single-layer BiLSTM, while in practice we use two layers. When parsing a sentence,
we compute scores for all possible n

2 arcs, and find the best scoring tree using a dynamic-programming algorithm.

scoring parse tree y in the space Y(s) of valid de-
pendency trees over s. In order to make the search
tractable, the scoring function is decomposed to the
sum of local scores for each part independently.

In this work, we focus on arc-factored graph
based approach presented in McDonald et al. (2005).
Arc-factored parsing decomposes the score of a tree
to the sum of the score of its head-modifier arcs
(h,m):

parse(s) = argmax
y2Y(s)

X

(h,m)2y

score
�
�(s, h,m)

�

Given the scores of the arcs the highest scoring pro-
jective tree can be efficiently found using Eisner’s
decoding algorithm (1996). McDonald et al. and
most subsequent work estimate the local score of an
arc by a linear model parameterized by a weight vec-
tor w, and a feature function �(s, h,m) assigning a
sparse feature vector for an arc linking modifier m
to head h. We follow Pei et al. (2015) and replace
the linear scoring function with an MLP.

The feature extractor �(s, h,m) is usually com-
plex, involving many elements (see Section 2.1).
In contrast, our feature extractor uses merely the
BiLSTM encoding of the head word and the mod-

ifier word:

�(s, h,m) = BIRNN(x1:n, h) � BIRNN(x1:n,m)

The final model is:

parse(s) = argmax
y2Y(s)

scoreglobal(s, y)

= argmax
y2Y(s)

X

(h,m)2y

score
�
�(s, h,m)

�

= argmax
y2Y(s)

X

(h,m)2y

MLP (vh � vm)

vi = BIRNN(x1:n, i)

The architecture is illustrated in Figure 2.

Training The training objective is to set the score
function such that correct tree y is scored above in-
correct ones. We use a margin-based objective (Mc-
Donald et al., 2005; LeCun et al., 2006), aiming to
maximize the margin between the score of the gold
tree y and the highest scoring incorrect tree y

0. We
define a hinge loss with respect to a gold tree y as:

321

TR GR

systematically varying the input representation xi of a word
wi. In the simplest model, xi is equal to a randomly initial-
ized word embedding er(wi):

xi = er(wi) (1)

In the most complex model, the randomly initialized em-
bedding is replaced by a pre-trained embedding et(wi),
which is concatenated with a character-based vector
BiLSTM(ch1:m), obtained by running a BiLSTM over the
characters ch1:m of wi, and an embedding e(pi) of the
word’s universal part-of-speech tag (Nivre et al., 2016):

xi = et(wi) ◦ BiLSTM(ch1:m) ◦ e(pi) (2)

In addition to the simplest and most complex models, we
test all combinations of one and two enhancements in ex-
periments on nine treebanks from Universal Dependen-
cies (Nivre et al., 2016) (v2.0): Ancient Greek (PROIEL),
Arabic (PADT), Chinese (GSD), English (EWT), Finnish
(TDT), Hebrew (HTB), Korean (GSD), Russian (GSD) and
Swedish (Talbanken). Our main findings can be summa-
rized as follows:

• For all techniques, improvements are largest for low-
frequency and open-class words and for morphologi-
cally rich languages.

• These improvements are largely redundant when the
techniques are used together.

• Character-based models are the most effective tech-
nique for low-frequency words.

• Part-of-speech tags are potentially effective for high-
frequency function words, but current state-of-the-art
taggers are not accurate enough to fully exploit this.

• Large character embeddings are helpful in morpholog-
ically rich languages, regardless of character set size.

4. Multi-Treebank Models
When training parsers, we sometimes want to combine (an-
notated) data from multiple, heterogeneous sources. In a
monolingual setting, we may have access to treebanks con-
taining different text genres or annotated in slightly differ-
ent styles. In a multilingual setting, we may want to com-
bine training data from multiple languages in order to im-
prove parsing accuracy for low-resource languages. Simply
concatenating the training sets, however, is unlikely to give
optimal performance and often results in degraded perfor-
mance. In recent work, we have explored the use of tree-
bank embeddings for parser training with heterogeneous
treebanks, generalizing the language embeddings of Am-
mar et al. (2016) to apply not only in multilingual but also
in monolingual settings.

The basic idea is to add a treebank embedding e(tbi) to
the input vector xi associated with each token wi:

xi = et(wi) ◦ BiLSTM(ch1:m) ◦ e(pi) ◦ e(tbi) (3)

At training time, the treebank embeddings allow the parser
to learn from multiple treebanks while remaining sensitive
to the idiosyncracies of each one. At parsing time, we can

select the treebank embedding that is most suitable for the
input text, whether in a particular language or belonging to
a particular text genre.

In Stymne et al. (2018), we show that treebank embed-
dings provide an effective way to combine multiple het-
erogeneous treebanks in the monolingual setting. In ex-
periments with 24 treebanks in 9 languages from Univer-
sal Dependencies v2.1, we observe an average increase in
labeled attachment score (LAS) by 3.5 percentage points
compared to a single-treebank model, and by 2.2 percent-
age points compared to simple concatenation of training
sets. The treebank embedding technique performs on par
with the fine-tuning method of Che et al. (2017) and Shi
et al. (2017) but is both simpler and more efficient, since
only one model is used at both training and parsing time.
Another advantage of the treebank embedding technique is
that it is very reliable and, unlike the simple concatenation,
never degrades performance compared to the single-model
baseline.

In Smith et al. (2018a), we show that treebank embed-
dings can be used both monolingually, to combine several
treebanks for a single language, and multilingually, mainly
for closely related languages, especially where one or more
of the languages have limited amounts of training data.
Moreover, the monolingual and the multilingual case can
be seamlessly integrated, so that we can train multilingual
models where one or more languages have multiple tree-
banks. In the 2018 CoNLL Shared Task, we use only 34
models to parse test sets from 84 treebanks and show that
this improves LAS by 1.66 percentage points on average
over all test sets, by 3.54 for test sets where the correspond-
ing training sets are characterized as “small” by the shared
task organizers, and by as much as 7.61 percentage points
for low-resource languages that have practically no training
data.

5. The 2018 CoNLL Shared Task
The Uppsala team participated in the 2018 CoNLL Shared
Task: Multilingual Parsing from Raw Text to Universal De-
pendencies (Zeman et al., 2018), using a pipeline system
consisting of three components. The first component is
a model for joint sentence and word segmentation, which
uses the BiRNN-CRF framework of Shao et al. (2018) to
predict sentence and word boundaries in the raw input text.
The second component is a part-of-speech tagger based on
Bohnet et al. (2018), which employs a sentence-based char-
acter model and also predicts morphological features. The
final component is UUParser, which takes the segmented
words and their predicted tags and features as input and
produces full dependency trees.

After evaluation on the official test sets, the Uppsala sys-
tem ranked 7th of 27 systems with respect to LAS, with a
macro-average F1 of 72.37, making it the highest ranking
transition-based parser in this year’s shared task. It also
reached the highest average score for word segmentation
(98.18), universal part-of-speech tags (90.91), and mor-
phological features (87.59). For more information about
the Uppsala system in the CoNLL shared tasks of 2017
and 2018, see de Lhoneux et al. (2017a) and Smith et al.
(2018a).

LSTM
f

xthe

concat

LSTM
f

xbrown

concat

LSTM
f

xfox

concat

LSTM
f

xjumped

concat

LSTM
f

x⇤

concat

LSTM
b

s0
LSTM

b
s1

LSTM
b

s2
LSTM

b
s3

LSTM
b

s4

Vthe Vbrown Vfox Vjumped V⇤

MLP MLP MLP MLP

+

Figure 2: Illustration of the neural model scheme of the graph-based parser when calculating the score of a given parse
tree. The parse tree is depicted below the sentence. Each dependency arc in the sentence is scored using an MLP that
is fed the BiLSTM encoding of the words at the arc’s end points (the colors of the arcs correspond to colors of the
MLP inputs above), and the individual arc scores are summed to produce the final score. All the MLPs share the same
parameters. The figure depicts a single-layer BiLSTM, while in practice we use two layers. When parsing a sentence,
we compute scores for all possible n

2 arcs, and find the best scoring tree using a dynamic-programming algorithm.

scoring parse tree y in the space Y(s) of valid de-
pendency trees over s. In order to make the search
tractable, the scoring function is decomposed to the
sum of local scores for each part independently.

In this work, we focus on arc-factored graph
based approach presented in McDonald et al. (2005).
Arc-factored parsing decomposes the score of a tree
to the sum of the score of its head-modifier arcs
(h,m):

parse(s) = argmax
y2Y(s)

X

(h,m)2y

score
�
�(s, h,m)

�

Given the scores of the arcs the highest scoring pro-
jective tree can be efficiently found using Eisner’s
decoding algorithm (1996). McDonald et al. and
most subsequent work estimate the local score of an
arc by a linear model parameterized by a weight vec-
tor w, and a feature function �(s, h,m) assigning a
sparse feature vector for an arc linking modifier m
to head h. We follow Pei et al. (2015) and replace
the linear scoring function with an MLP.

The feature extractor �(s, h,m) is usually com-
plex, involving many elements (see Section 2.1).
In contrast, our feature extractor uses merely the
BiLSTM encoding of the head word and the mod-

ifier word:

�(s, h,m) = BIRNN(x1:n, h) � BIRNN(x1:n,m)

The final model is:

parse(s) = argmax
y2Y(s)

scoreglobal(s, y)

= argmax
y2Y(s)

X

(h,m)2y

score
�
�(s, h,m)

�

= argmax
y2Y(s)

X

(h,m)2y

MLP (vh � vm)

vi = BIRNN(x1:n, i)

The architecture is illustrated in Figure 2.

Training The training objective is to set the score
function such that correct tree y is scored above in-
correct ones. We use a margin-based objective (Mc-
Donald et al., 2005; LeCun et al., 2006), aiming to
maximize the margin between the score of the gold
tree y and the highest scoring incorrect tree y

0. We
define a hinge loss with respect to a gold tree y as:

321

Experimental Setup

LSTM
f

xthe

concat

LSTM
f

xbrown

concat

LSTM
f

xfox

concat

LSTM
f

xjumped

concat

LSTM
f

x⇤

concat

LSTM
b

s0
LSTM

b
s1

LSTM
b

s2
LSTM

b
s3

LSTM
b

s4

Vthe Vbrown Vfox Vjumped V⇤

MLP MLP MLP MLP

+

Figure 2: Illustration of the neural model scheme of the graph-based parser when calculating the score of a given parse
tree. The parse tree is depicted below the sentence. Each dependency arc in the sentence is scored using an MLP that
is fed the BiLSTM encoding of the words at the arc’s end points (the colors of the arcs correspond to colors of the
MLP inputs above), and the individual arc scores are summed to produce the final score. All the MLPs share the same
parameters. The figure depicts a single-layer BiLSTM, while in practice we use two layers. When parsing a sentence,
we compute scores for all possible n

2 arcs, and find the best scoring tree using a dynamic-programming algorithm.

scoring parse tree y in the space Y(s) of valid de-
pendency trees over s. In order to make the search
tractable, the scoring function is decomposed to the
sum of local scores for each part independently.

In this work, we focus on arc-factored graph
based approach presented in McDonald et al. (2005).
Arc-factored parsing decomposes the score of a tree
to the sum of the score of its head-modifier arcs
(h,m):

parse(s) = argmax
y2Y(s)

X

(h,m)2y

score
�
�(s, h,m)

�

Given the scores of the arcs the highest scoring pro-
jective tree can be efficiently found using Eisner’s
decoding algorithm (1996). McDonald et al. and
most subsequent work estimate the local score of an
arc by a linear model parameterized by a weight vec-
tor w, and a feature function �(s, h,m) assigning a
sparse feature vector for an arc linking modifier m
to head h. We follow Pei et al. (2015) and replace
the linear scoring function with an MLP.

The feature extractor �(s, h,m) is usually com-
plex, involving many elements (see Section 2.1).
In contrast, our feature extractor uses merely the
BiLSTM encoding of the head word and the mod-

ifier word:

�(s, h,m) = BIRNN(x1:n, h) � BIRNN(x1:n,m)

The final model is:

parse(s) = argmax
y2Y(s)

scoreglobal(s, y)

= argmax
y2Y(s)

X

(h,m)2y

score
�
�(s, h,m)

�

= argmax
y2Y(s)

X

(h,m)2y

MLP (vh � vm)

vi = BIRNN(x1:n, i)

The architecture is illustrated in Figure 2.

Training The training objective is to set the score
function such that correct tree y is scored above in-
correct ones. We use a margin-based objective (Mc-
Donald et al., 2005; LeCun et al., 2006), aiming to
maximize the margin between the score of the gold
tree y and the highest scoring incorrect tree y

0. We
define a hinge loss with respect to a gold tree y as:

321

TR GR

systematically varying the input representation xi of a word
wi. In the simplest model, xi is equal to a randomly initial-
ized word embedding er(wi):

xi = er(wi) (1)

In the most complex model, the randomly initialized em-
bedding is replaced by a pre-trained embedding et(wi),
which is concatenated with a character-based vector
BiLSTM(ch1:m), obtained by running a BiLSTM over the
characters ch1:m of wi, and an embedding e(pi) of the
word’s universal part-of-speech tag (Nivre et al., 2016):

xi = et(wi) ◦ BiLSTM(ch1:m) ◦ e(pi) (2)

In addition to the simplest and most complex models, we
test all combinations of one and two enhancements in ex-
periments on nine treebanks from Universal Dependen-
cies (Nivre et al., 2016) (v2.0): Ancient Greek (PROIEL),
Arabic (PADT), Chinese (GSD), English (EWT), Finnish
(TDT), Hebrew (HTB), Korean (GSD), Russian (GSD) and
Swedish (Talbanken). Our main findings can be summa-
rized as follows:

• For all techniques, improvements are largest for low-
frequency and open-class words and for morphologi-
cally rich languages.

• These improvements are largely redundant when the
techniques are used together.

• Character-based models are the most effective tech-
nique for low-frequency words.

• Part-of-speech tags are potentially effective for high-
frequency function words, but current state-of-the-art
taggers are not accurate enough to fully exploit this.

• Large character embeddings are helpful in morpholog-
ically rich languages, regardless of character set size.

4. Multi-Treebank Models
When training parsers, we sometimes want to combine (an-
notated) data from multiple, heterogeneous sources. In a
monolingual setting, we may have access to treebanks con-
taining different text genres or annotated in slightly differ-
ent styles. In a multilingual setting, we may want to com-
bine training data from multiple languages in order to im-
prove parsing accuracy for low-resource languages. Simply
concatenating the training sets, however, is unlikely to give
optimal performance and often results in degraded perfor-
mance. In recent work, we have explored the use of tree-
bank embeddings for parser training with heterogeneous
treebanks, generalizing the language embeddings of Am-
mar et al. (2016) to apply not only in multilingual but also
in monolingual settings.

The basic idea is to add a treebank embedding e(tbi) to
the input vector xi associated with each token wi:

xi = et(wi) ◦ BiLSTM(ch1:m) ◦ e(pi) ◦ e(tbi) (3)

At training time, the treebank embeddings allow the parser
to learn from multiple treebanks while remaining sensitive
to the idiosyncracies of each one. At parsing time, we can

select the treebank embedding that is most suitable for the
input text, whether in a particular language or belonging to
a particular text genre.

In Stymne et al. (2018), we show that treebank embed-
dings provide an effective way to combine multiple het-
erogeneous treebanks in the monolingual setting. In ex-
periments with 24 treebanks in 9 languages from Univer-
sal Dependencies v2.1, we observe an average increase in
labeled attachment score (LAS) by 3.5 percentage points
compared to a single-treebank model, and by 2.2 percent-
age points compared to simple concatenation of training
sets. The treebank embedding technique performs on par
with the fine-tuning method of Che et al. (2017) and Shi
et al. (2017) but is both simpler and more efficient, since
only one model is used at both training and parsing time.
Another advantage of the treebank embedding technique is
that it is very reliable and, unlike the simple concatenation,
never degrades performance compared to the single-model
baseline.

In Smith et al. (2018a), we show that treebank embed-
dings can be used both monolingually, to combine several
treebanks for a single language, and multilingually, mainly
for closely related languages, especially where one or more
of the languages have limited amounts of training data.
Moreover, the monolingual and the multilingual case can
be seamlessly integrated, so that we can train multilingual
models where one or more languages have multiple tree-
banks. In the 2018 CoNLL Shared Task, we use only 34
models to parse test sets from 84 treebanks and show that
this improves LAS by 1.66 percentage points on average
over all test sets, by 3.54 for test sets where the correspond-
ing training sets are characterized as “small” by the shared
task organizers, and by as much as 7.61 percentage points
for low-resource languages that have practically no training
data.

5. The 2018 CoNLL Shared Task
The Uppsala team participated in the 2018 CoNLL Shared
Task: Multilingual Parsing from Raw Text to Universal De-
pendencies (Zeman et al., 2018), using a pipeline system
consisting of three components. The first component is
a model for joint sentence and word segmentation, which
uses the BiRNN-CRF framework of Shao et al. (2018) to
predict sentence and word boundaries in the raw input text.
The second component is a part-of-speech tagger based on
Bohnet et al. (2018), which employs a sentence-based char-
acter model and also predicts morphological features. The
final component is UUParser, which takes the segmented
words and their predicted tags and features as input and
produces full dependency trees.

After evaluation on the official test sets, the Uppsala sys-
tem ranked 7th of 27 systems with respect to LAS, with a
macro-average F1 of 72.37, making it the highest ranking
transition-based parser in this year’s shared task. It also
reached the highest average score for word segmentation
(98.18), universal part-of-speech tags (90.91), and mor-
phological features (87.59). For more information about
the Uppsala system in the CoNLL shared tasks of 2017
and 2018, see de Lhoneux et al. (2017a) and Smith et al.
(2018a).

+E(LMo)

+B(ERT)

Results

Results

+3.99 +2.85

Results

+4.47 +3.13

Error Analysis

TR
GR

Error Analysis

+ELMo

Error Analysis

+BERT

Main Findings

• The distinctive error profiles of transition-based and
graph-based parsers are still visible but less pronounced

• Deep contextualized word representations improve
transition-based parsers more than graph-based parsers
and eliminate most of the differences

• These patterns are remarkably consistent across
languages in a typologically diverse sample

Do we need parsers at all?
• Do the vector spaces of deep contextualized word

representations encode parse trees implicitly?

• Learn linear transform such that distance encodes tree
distance and norm encodes tree depth

John Hewitt and Christopher D. Manning 2019. A Structural Probe for Finding  
Syntax in Word Representations. In Proceedings of NAACL, pages 4129–4138.

Almost Dependency Parsing

4132

BERTlarge16

The complex financing plan in the S+L bailout law includes raising $ 30 billion from debt issued by the newly created RTC .
. . . .

..
..

. .. .

..
. .

..
.

.. . . .

ELMo1

The complex financing plan in the S+L bailout law includes raising $ 30 billion from debt issued by the newly created RTC .
. . . .

.
.

.
.

. .
. .

..
.

..
.

.
.

..
.

.
. .

.

.

Proj0

The complex financing plan in the S+L bailout law includes raising $ 30 billion from debt issued by the newly created RTC .
. . . .

..
..

. .. .

..
.

Figure 2: Minimum spanning trees resultant from predicted squared distances on BERTLARGE16 and ELMO1 compared
to the best baseline, PROJ0. Black edges are the gold parse, above each sentence; blue are BERTLARGE16, red are ELMO1,
and purple are PROJ0.

attachment score (UUAS)—the percent of undi-
rected edges placed correctly—against the gold
tree. For distance correlation, we compute the
Spearman correlation between true and predicted
distances for each word in each sentence. We
average these correlations between all sentences of
a fixed length, and report the macro average across
sentence lengths 5–50 as the “distance Spearman
(DSpr.)” metric.5

3.2 Tree depth evaluation metrics
We evaluate models on their ability to recreate the
order of words specified by their depth in the parse
tree. We report the Spearman correlation betwen
the true depth ordering and the predicted ordering,
averaging first between sentences of the same
length, and then across sentence lengths 5–50, as
the “norm Spearman (NSpr.)”. We also evaluate
models’ ability to identify the root of the sentence
as the least deep, as the “root%”.6

4 Results

We report the results of parse distance probes and
parse depth probes in Table 1. We first confirm
that our probe can’t simply “learn to parse” on top
of any informative representation, unlike parser-
based probes (Peters et al., 2018b). In particular,
ELMO0 and DECAY0 fail to substantially outper-
form a right-branching-tree oracle that encodes the
linear sequence of words. PROJ0, which has all of
the representational capacity of ELMO1 but none
of the training, performs the best among the base-
lines. Upon inspection, we found that our probe
on PROJ0 improves over the linear hypothesis with

5The 5–50 range is chosen to avoid simple short sentences
as well as sentences so long as to be rare in the test data.

6In UUAS and “root%” evaluations, we ignore all punctu-
ation tokens, as is standard.

Figure 3: Parse tree depth according to the gold tree (black,
circle) and the norm probes (squared) on ELMO1 (red, trian-
gle) and BERTLARGE16 (blue, square).

mostly simple deviations from linearity, as visual-
ized in Figure 2.

We find surprisingly robust syntax embedded
in each of ELMo and BERT according to our
probes. Figure 2 shows the surprising extent to
which a minimum spanning tree on predicted
distances recovers the dependency parse structure
in both ELMo and BERT. As we note however, the
distance metric itself is a global notion; all pairs of
words are trained to know their distance – not just
which word is their head; Figure 4 demonstrates
the rich structure of the true parse distance metric
recovered by the predicted distances. Figure 3
demonstrates the surprising extent to which the
depth in the tree is encoded by vector norm after
the probe transformation. Between models, we
find consistently that BERTLARGE performs
better than BERTBASE, which performs better
than ELMO.7 We also find, as in Peters et al.
(2018b), a clear difference in syntactic information
between layers; Figure 1 reports the performance

7It is worthwhile to note that our hypotheses were
developed while analyzing LSTM models like ELMo, and
applied without modification on the self-attention based
BERT models.

Almost Dependency Parsing

• How can we extract rooted directed dependency trees?

• How do results vary across different languages?

4132

BERTlarge16

The complex financing plan in the S+L bailout law includes raising $ 30 billion from debt issued by the newly created RTC .
. . . .

..
..

. .. .

..
. .

..
.

.. . . .

ELMo1

The complex financing plan in the S+L bailout law includes raising $ 30 billion from debt issued by the newly created RTC .
. . . .

.
.

.
.

. .
. .

..
.

..
.

.
.

..
.

.
. .

.

.

Proj0

The complex financing plan in the S+L bailout law includes raising $ 30 billion from debt issued by the newly created RTC .
. . . .

..
..

. .. .

..
.

Figure 2: Minimum spanning trees resultant from predicted squared distances on BERTLARGE16 and ELMO1 compared
to the best baseline, PROJ0. Black edges are the gold parse, above each sentence; blue are BERTLARGE16, red are ELMO1,
and purple are PROJ0.

attachment score (UUAS)—the percent of undi-
rected edges placed correctly—against the gold
tree. For distance correlation, we compute the
Spearman correlation between true and predicted
distances for each word in each sentence. We
average these correlations between all sentences of
a fixed length, and report the macro average across
sentence lengths 5–50 as the “distance Spearman
(DSpr.)” metric.5

3.2 Tree depth evaluation metrics
We evaluate models on their ability to recreate the
order of words specified by their depth in the parse
tree. We report the Spearman correlation betwen
the true depth ordering and the predicted ordering,
averaging first between sentences of the same
length, and then across sentence lengths 5–50, as
the “norm Spearman (NSpr.)”. We also evaluate
models’ ability to identify the root of the sentence
as the least deep, as the “root%”.6

4 Results

We report the results of parse distance probes and
parse depth probes in Table 1. We first confirm
that our probe can’t simply “learn to parse” on top
of any informative representation, unlike parser-
based probes (Peters et al., 2018b). In particular,
ELMO0 and DECAY0 fail to substantially outper-
form a right-branching-tree oracle that encodes the
linear sequence of words. PROJ0, which has all of
the representational capacity of ELMO1 but none
of the training, performs the best among the base-
lines. Upon inspection, we found that our probe
on PROJ0 improves over the linear hypothesis with

5The 5–50 range is chosen to avoid simple short sentences
as well as sentences so long as to be rare in the test data.

6In UUAS and “root%” evaluations, we ignore all punctu-
ation tokens, as is standard.

Figure 3: Parse tree depth according to the gold tree (black,
circle) and the norm probes (squared) on ELMO1 (red, trian-
gle) and BERTLARGE16 (blue, square).

mostly simple deviations from linearity, as visual-
ized in Figure 2.

We find surprisingly robust syntax embedded
in each of ELMo and BERT according to our
probes. Figure 2 shows the surprising extent to
which a minimum spanning tree on predicted
distances recovers the dependency parse structure
in both ELMo and BERT. As we note however, the
distance metric itself is a global notion; all pairs of
words are trained to know their distance – not just
which word is their head; Figure 4 demonstrates
the rich structure of the true parse distance metric
recovered by the predicted distances. Figure 3
demonstrates the surprising extent to which the
depth in the tree is encoded by vector norm after
the probe transformation. Between models, we
find consistently that BERTLARGE performs
better than BERTBASE, which performs better
than ELMO.7 We also find, as in Peters et al.
(2018b), a clear difference in syntactic information
between layers; Figure 1 reports the performance

7It is worthwhile to note that our hypotheses were
developed while analyzing LSTM models like ELMo, and
applied without modification on the self-attention based
BERT models.

Directed Dependency Trees

• Derive (directed) arc scores from distances and depths

• Extract maximum spanning tree using the CLE algorithm

Directed Dependency Trees

• Derive (directed) arc scores from distances and depths

• Extract maximum spanning tree using the CLE algorithm

score(wi, wj) =

⇢
�dist(wi, wj) if depth(wi) < depth(wj)
�1 otherwise

1

Directed Dependency Trees

• Derive (directed) arc scores from distances and depths

• Extract maximum spanning tree using the CLE algorithm

• Shorter distances correspond to higher arc scores

• Arcs from lower to higher nodes are excluded

score(wi, wj) =

⇢
�dist(wi, wj) if depth(wi) < depth(wj)
�1 otherwise

1

Experimental Setup

• Multilingual BERT

• Fit probe on each of BERT’s twelve layers

• Learn weighted average across all layers

• Evaluate on same 13 UD languages as in previous studies

Results
Arabic

Basque

Chinese

English

Finnish

Hebrew

Hindi

Italian

Japanese

Korean

Russian

Swedish

Turkish

0 10 20 30 40 50 60 70 80 90 100

Mean UAS = 71.3

Results
Arabic

Basque

Chinese

English

Finnish

Hebrew

Hindi

Italian

Japanese

Korean

Russian

Swedish

Turkish

0 10 20 30 40 50 60 70 80 90 100

Mean UAS = 71.3

Mean LAS = 84.9

Results
Arabic

Basque

Chinese

English

Finnish

Hebrew

Hindi

Italian

Japanese

Korean

Russian

Swedish

Turkish

0 10 20 30 40 50 60 70 80 90 100

Pearson’s r = 0.49

Mean UAS = 71.3

Mean LAS = 84.9

Main Findings

• We can extract directed dependency trees from deep
contextualized word representations

• Correspondence with treebank trees is substantially
lower than for supervised parsers

• Variation across languages correlate with supervised
parsing results

Conclusion

Conclusion

• Deep neural language models learn aspects of syntax

Conclusion

• Deep neural language models learn aspects of syntax

• Convergence across parsing models and algorithms

Conclusion

• Deep neural language models learn aspects of syntax

• Convergence across parsing models and algorithms

• No corresponding convergence across languages

Conclusion

• Deep neural language models learn aspects of syntax

• Convergence across parsing models and algorithms

• No corresponding convergence across languages

• A multilingual perspective is still important

Conclusion

• Deep neural language models learn aspects of syntax

• Convergence across parsing models and algorithms

• No corresponding convergence across languages

• A multilingual perspective is still important

• UD as a touchstone for parsing and probing studies

