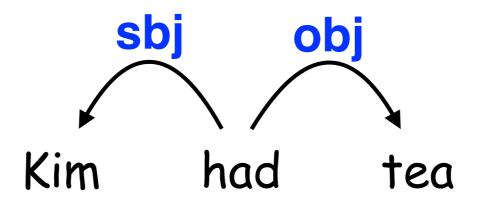
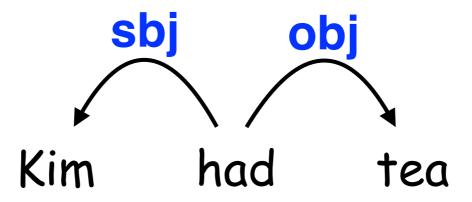


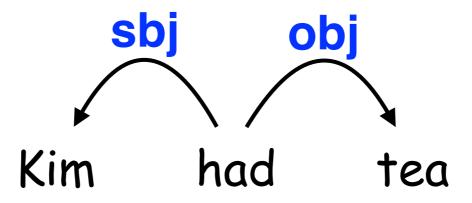
Multilingual Dependency Parsing From Universal Dependencies to Sesame Street

Joakim Nivre Uppsala University Department of Linguistics and Philology

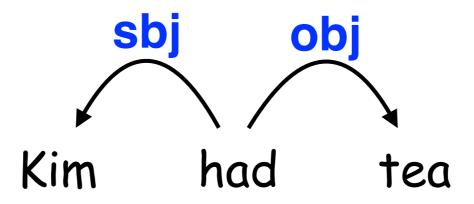




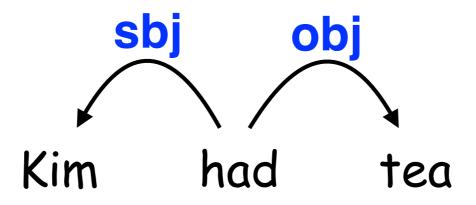
• Transparent encoding of predicate-argument structure



- Transparent encoding of predicate-argument structure
- Simple and efficient computational models



- Transparent encoding of predicate-argument structure
- Simple and efficient computational models
- Compatible with linguistic traditions around the world

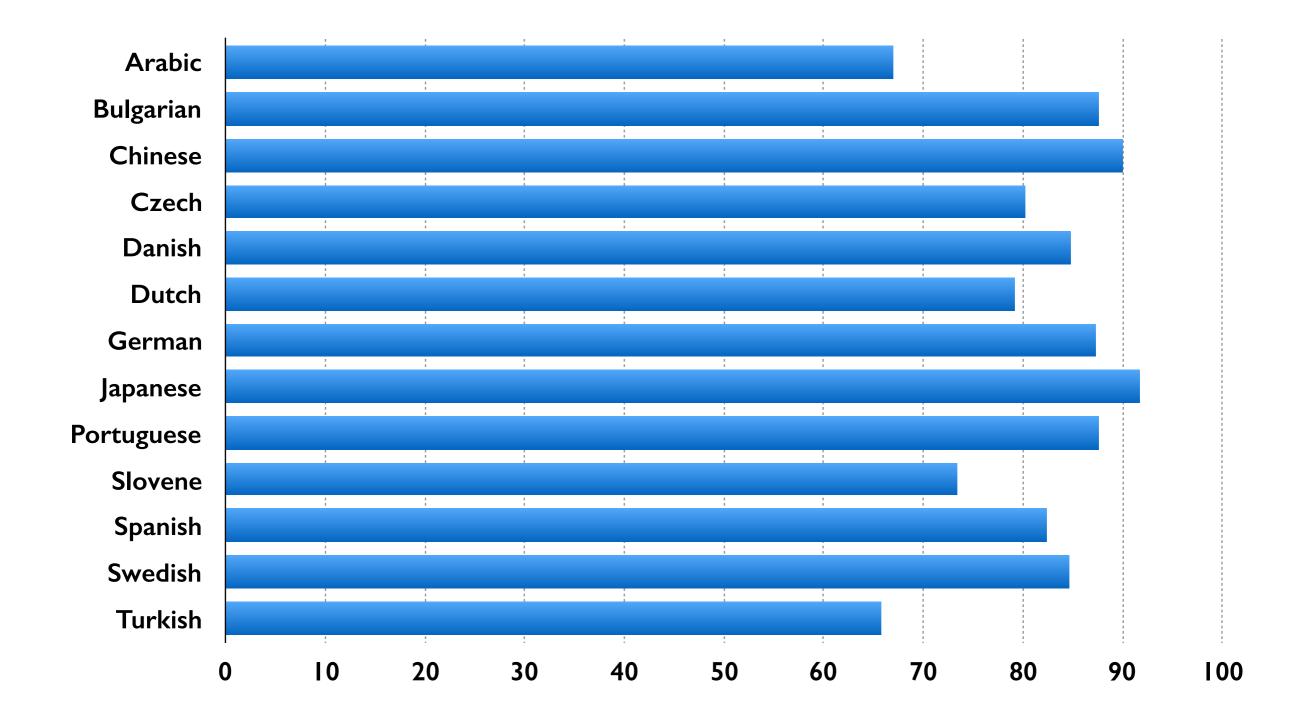


- Transparent encoding of predicate-argument structure
- Simple and efficient computational models
- Compatible with linguistic traditions around the world
- Multilingual research tradition from CoNLL 2006–2007

CoNLL-X Shared Task

- First shared task on multilingual dependency parsing
- Data from heterogeneous treebanks in 13 languages
- Standardized into a single unified format (CoNLL-X)
- Enabled a new line of multilingual research

CoNLL-X Results

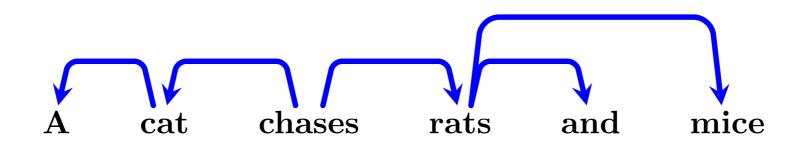


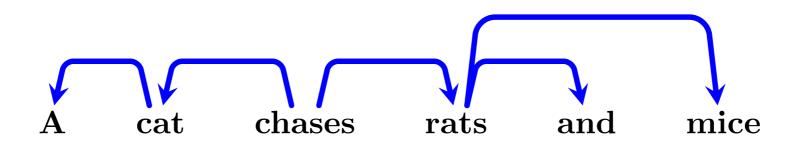
• Amount of data – weak predictor overall

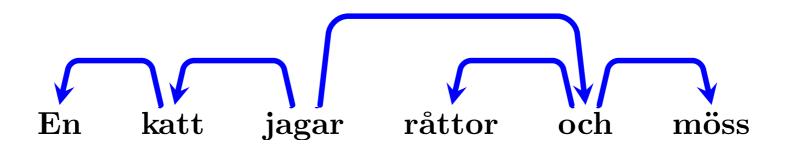
- Amount of data weak predictor overall
- Text types important but hard to measure

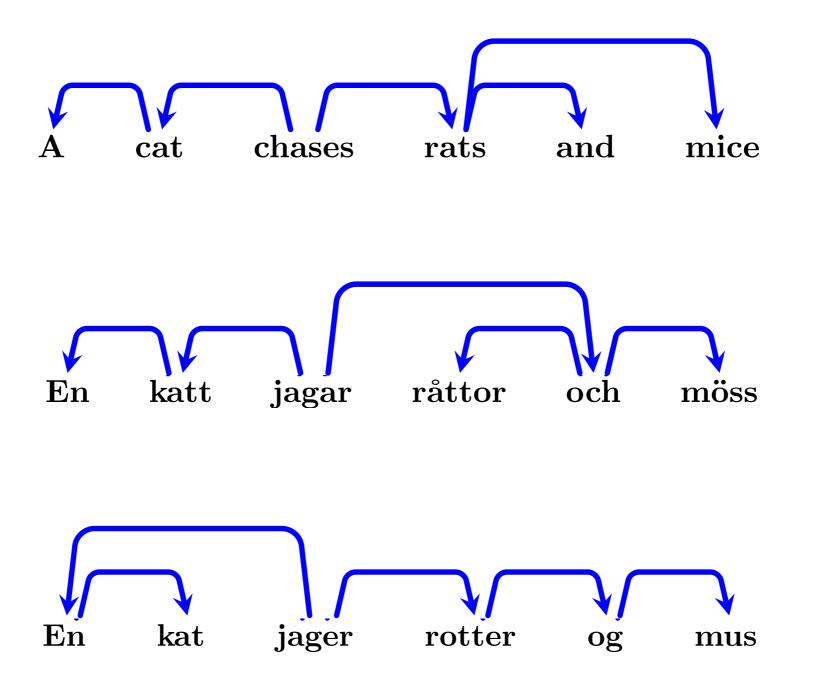
- Amount of data weak predictor overall
- Text types important but hard to measure
- Language types analytical versus synthetic

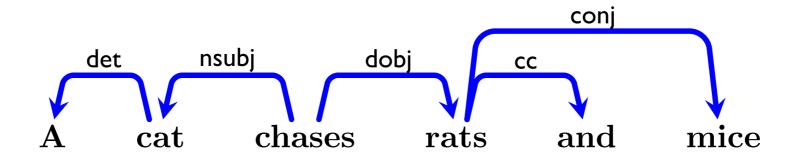
- Amount of data weak predictor overall
- Text types important but hard to measure
- Language types analytical versus synthetic
- Annotation different descriptive traditions

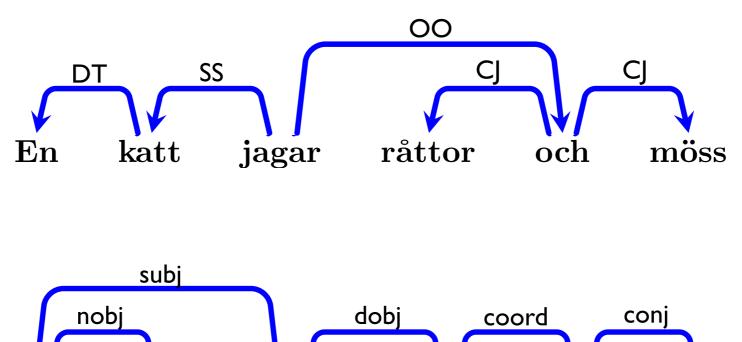


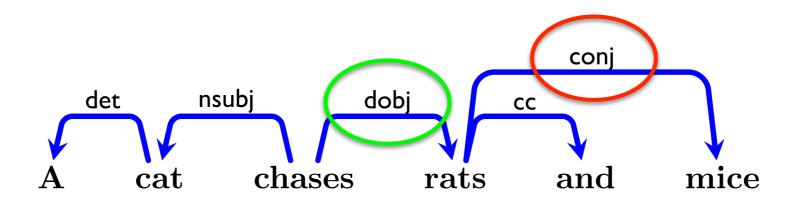


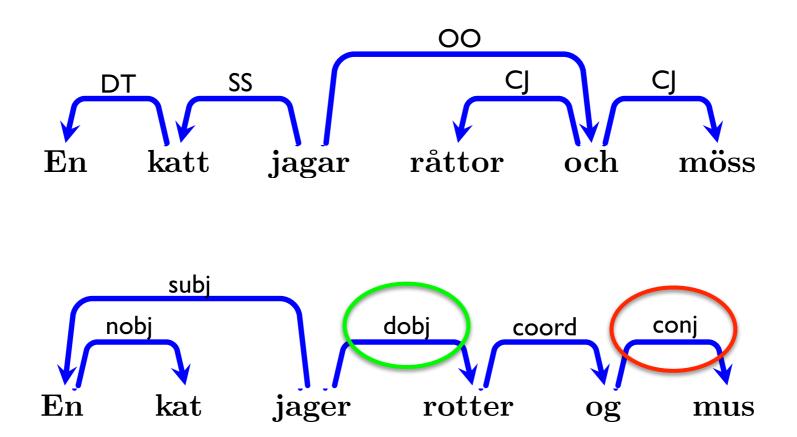


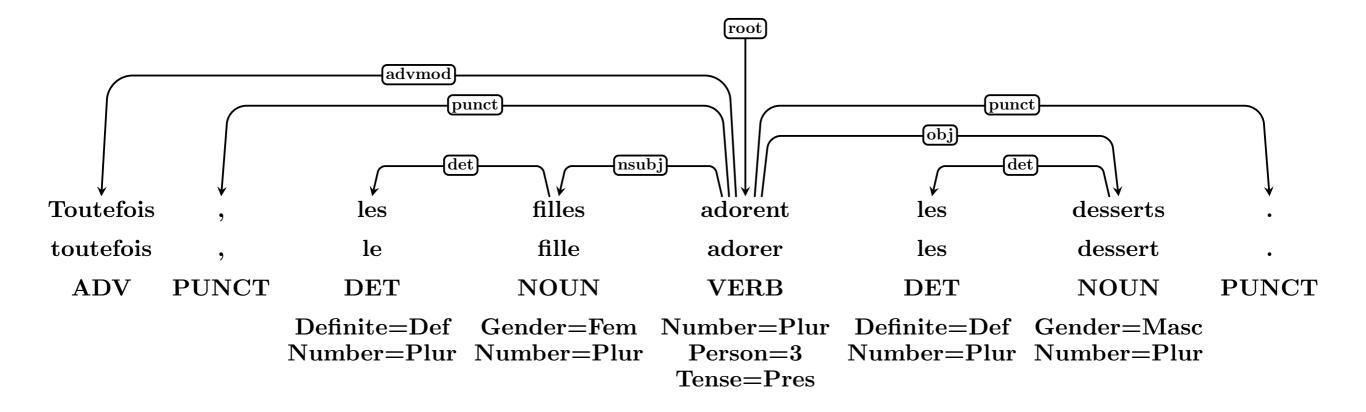


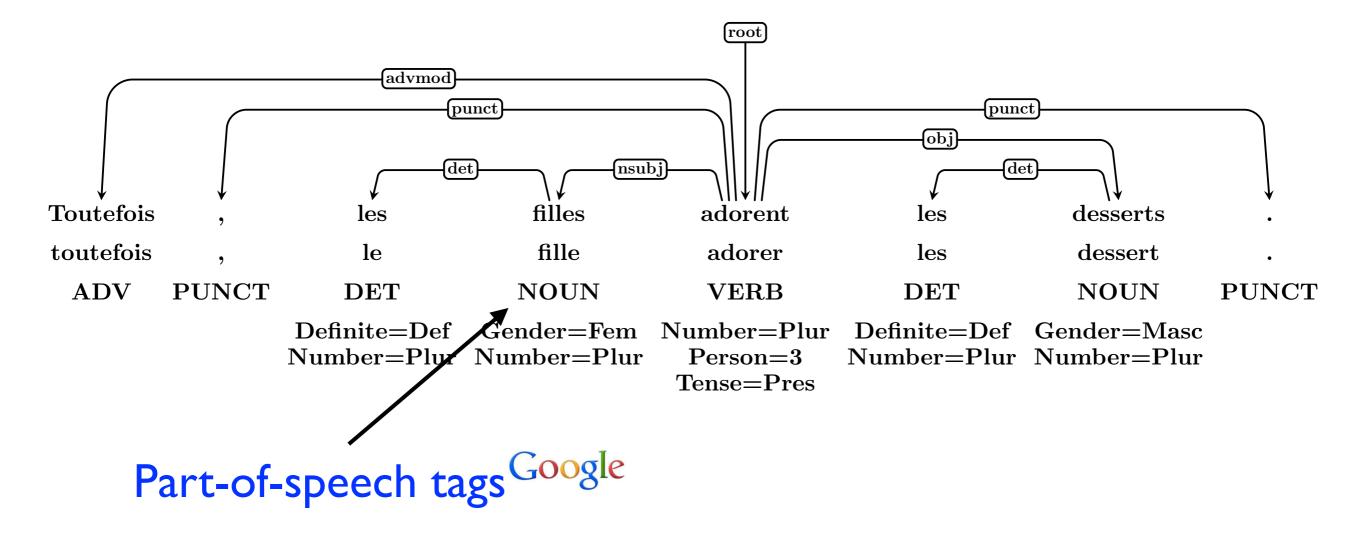


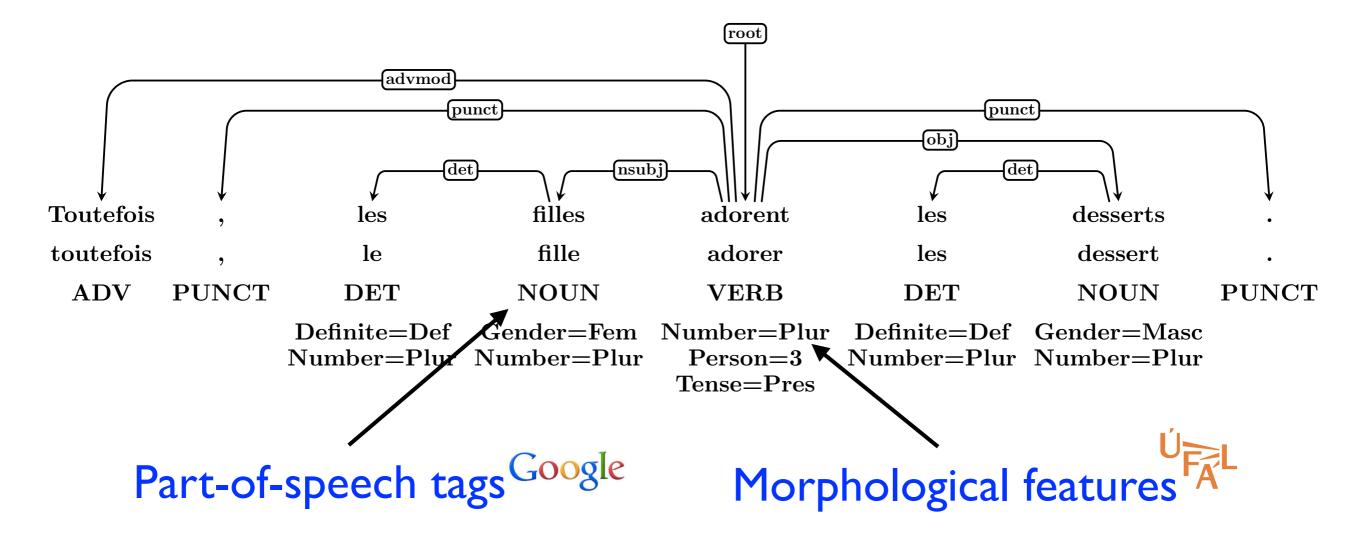


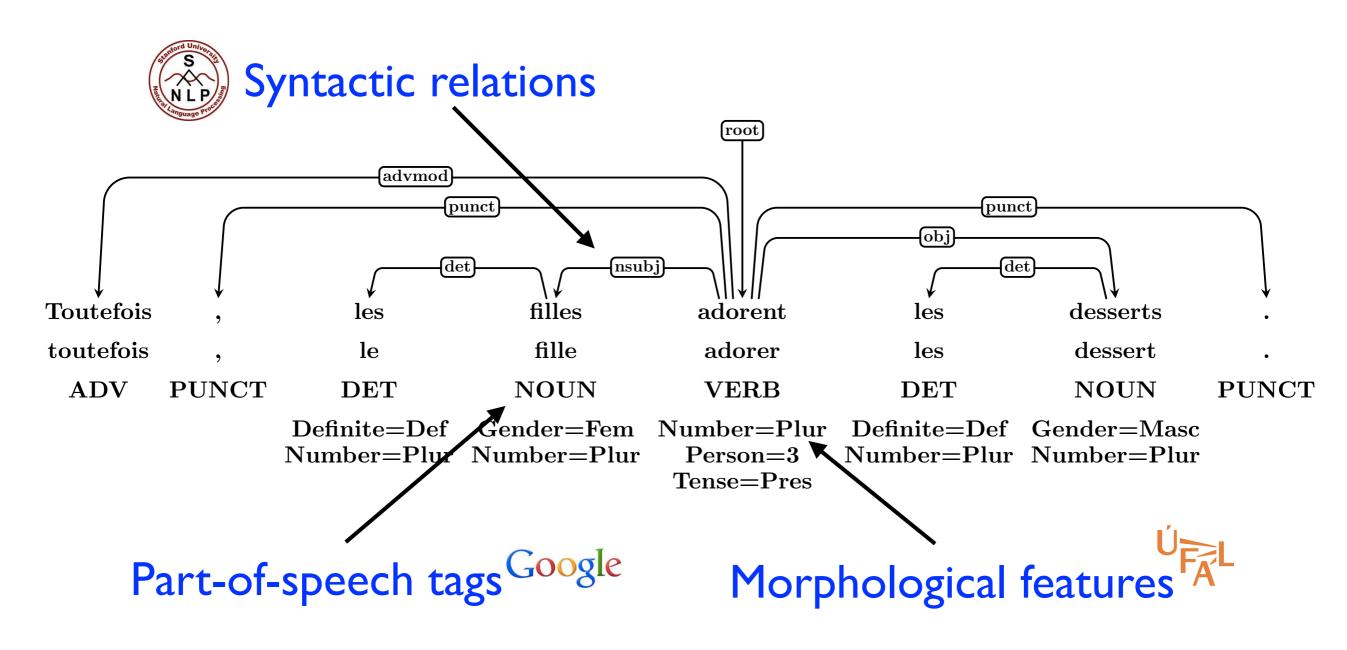












Who?

Open community effort – a big tent UD v2.5: 90 languages, 157 treebanks, 345 contributors Come join us at <u>http://universaldependencies.org</u>

Marie de Marneffe

Filip Ginter

Yoav Goldberg

Jan Hajič

Chris Manning

Ryan McDonald

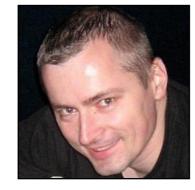
Slav Petrov

Sampo Pyysalo

Sebastian Schuster

Reut Tsarfaty

Francis Tyers



Dan Zeman

Cross-linguistically consistent morphosyntactic annotation

Cross-linguistically consistent morphosyntactic annotation

Facilitate multilingual research in NLP and linguistics

- Meaningful linguistic analysis across languages
- Syntactic parsing in multilingual settings
- NLP systems for multiple languages
- Facilitate resource-building for new languages

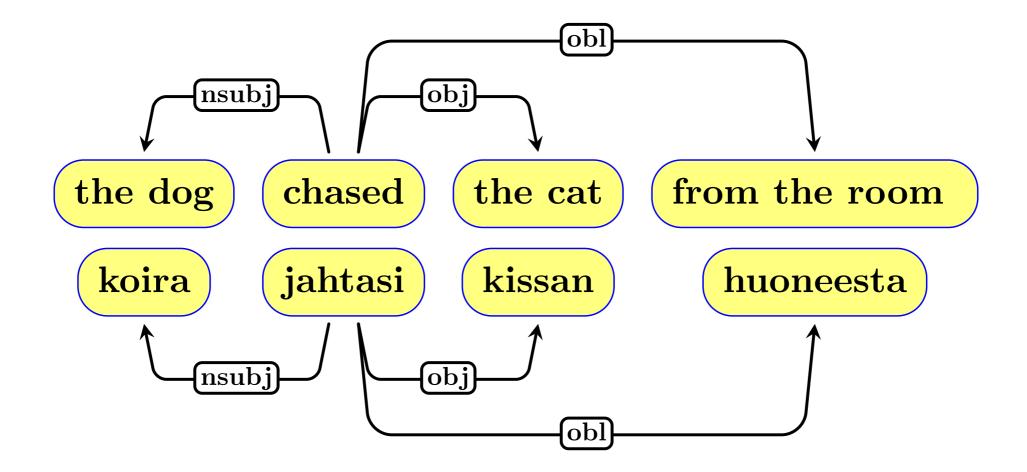
Cross-linguistically consistent morphosyntactic annotation

Facilitate multilingual research in NLP and linguistics

- Meaningful linguistic analysis across languages
- Syntactic parsing in multilingual settings
- NLP systems for multiple languages
- Facilitate resource-building for new languages

Complement – not replace – language-specific schemes

How?



Focus on grammatical relations between (content) words

٠

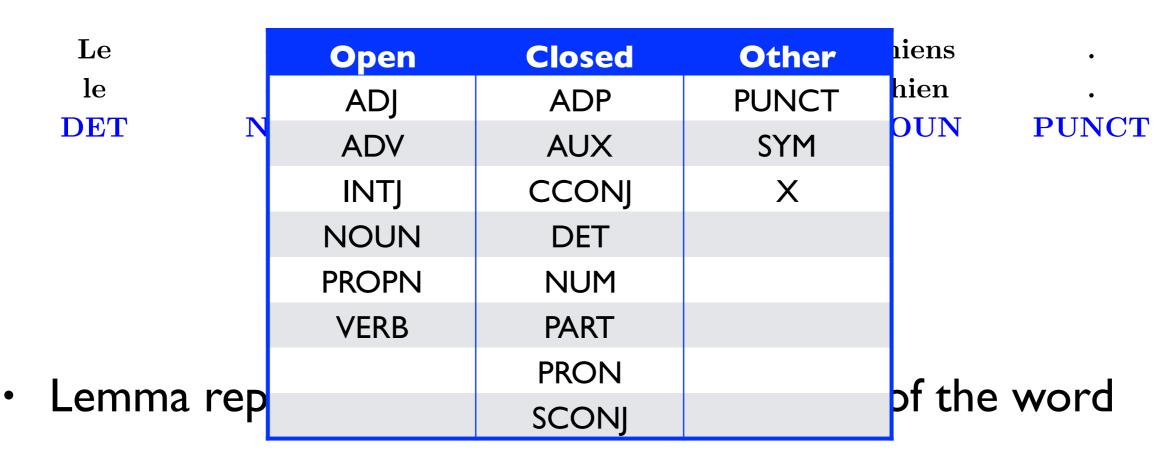
${ m Le}$	\mathbf{chat}	\mathbf{chasse}	\mathbf{les}	chiens

\mathbf{Le}	\mathbf{chat}	\mathbf{chasse}	\mathbf{les}	\mathbf{chiens}
le	\mathbf{chat}	$\mathbf{chasser}$	\mathbf{le}	\mathbf{chien}

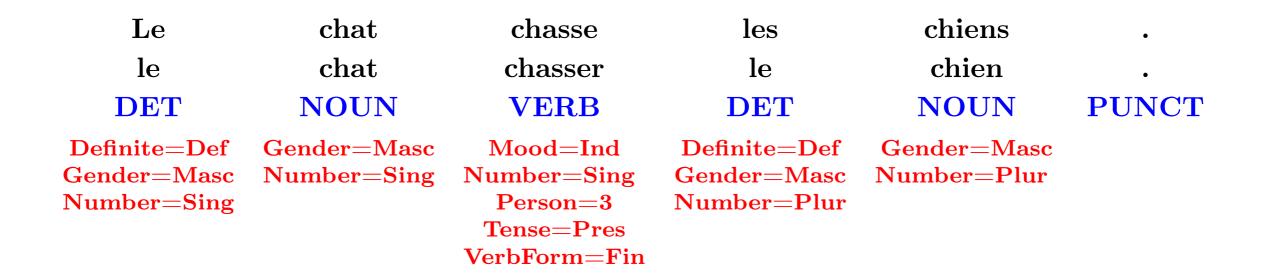
• Lemma representing the semantic content of the word

\mathbf{Le}	\mathbf{chat}	chasse	\mathbf{les}	chiens	•
\mathbf{le}	\mathbf{chat}	chasser	le	chien	•
DET	NOUN	VERB	\mathbf{DET}	NOUN	PUNCT

- Lemma representing the semantic content of the word
- Part-of-speech tag representing its grammatical class



• Part-of-speech tag representing its grammatical class

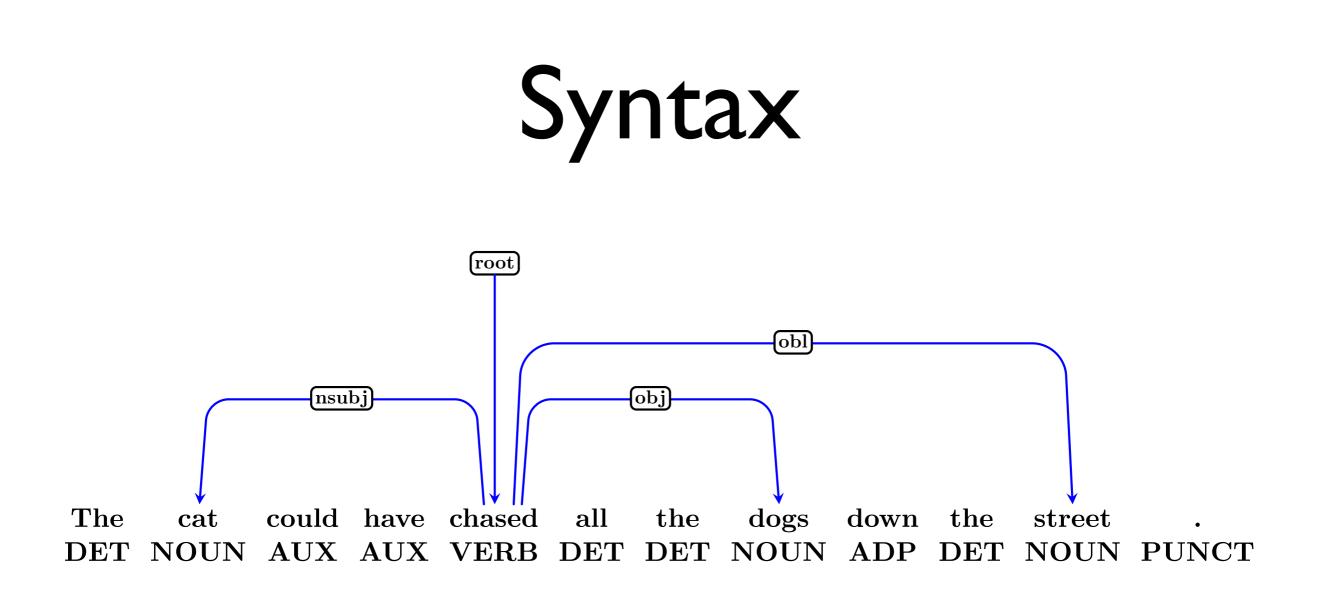


- Lemma representing the semantic content of the word
- Part-of-speech tag representing its grammatical class
- Features representing lexical and grammatical properties of the lemma or the particular word form

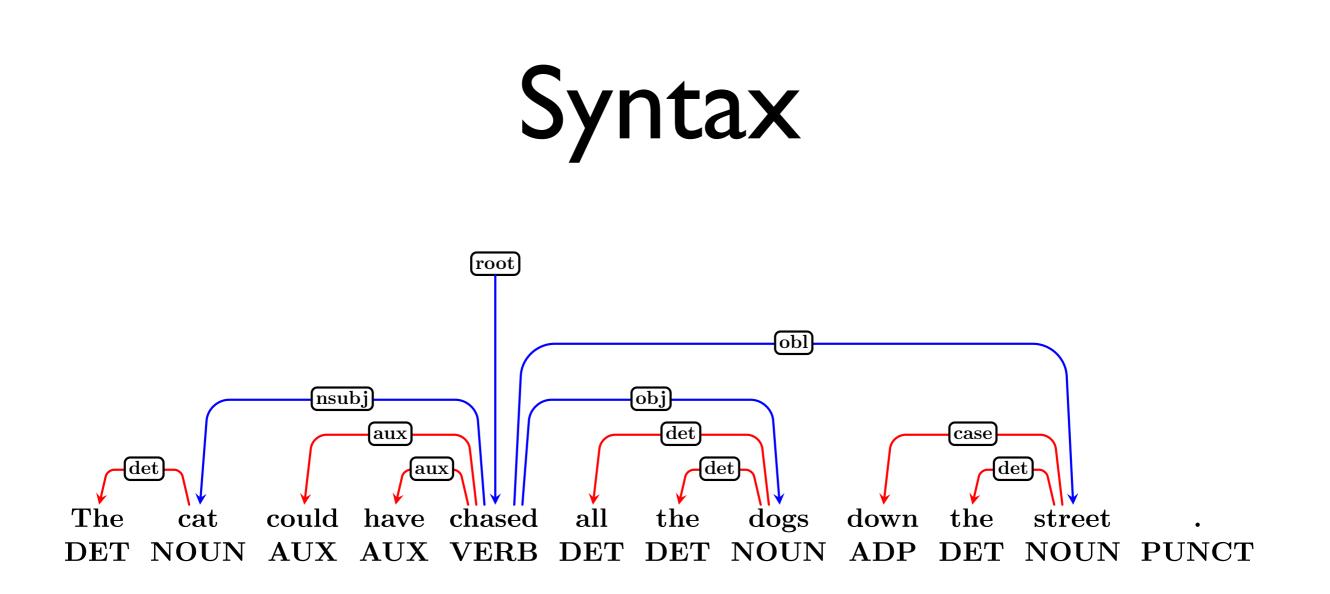
Le	Lexical	Inflectional Nominal	Inflectional Verbal	niens .
le o DET N	PronType	Gender	VerbForm	hien . OUN PUNCT
Definite=Def Gend	NumType	Animacy	Mood	er=Masc
Gender=Masc Num Number=Sing	Poss	Number	Tense	er=Plur
U	Reflex	Case	Aspect	
	Foreign	Definite	Voice	
	Abbr	Degree	Evident	
 Lemma rep 			Polarity	of the word
			Person	• • •
 Part-of-spe 			Polite	tical class

 Features representing lexical and grammatical properties of the lemma or the particular word form

Syntax

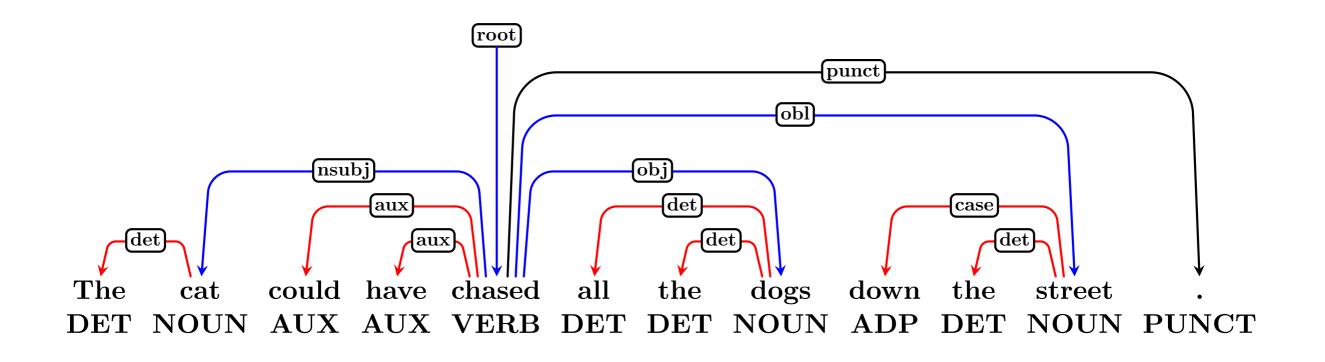


Content words are linked by grammatical relations



- Content words are linked by grammatical relations
- Function words attach to the content word they modify

Syntax



- Content words are linked by grammatical relations
- Function words attach to the content word they modify
- Punctuation attach to head of phrase or clause

Syntax

	Nominal	Clause	Modifier Word	Function Word
Core Predicate Dep	nsubj obj iobj	csubj ccomp xcomp		
Non-Core Predicate Dep	obl vocative expl dislocated	advcl	advmod* discourse	aux cop mark
Nominal Dep	nmod appos nummod	acl	amod	det clf case
Coordination	MWE	Loose	Special	Other
conj cc	fixed flat compound	parataxis list	orphan goeswith reparandum	punct root dep

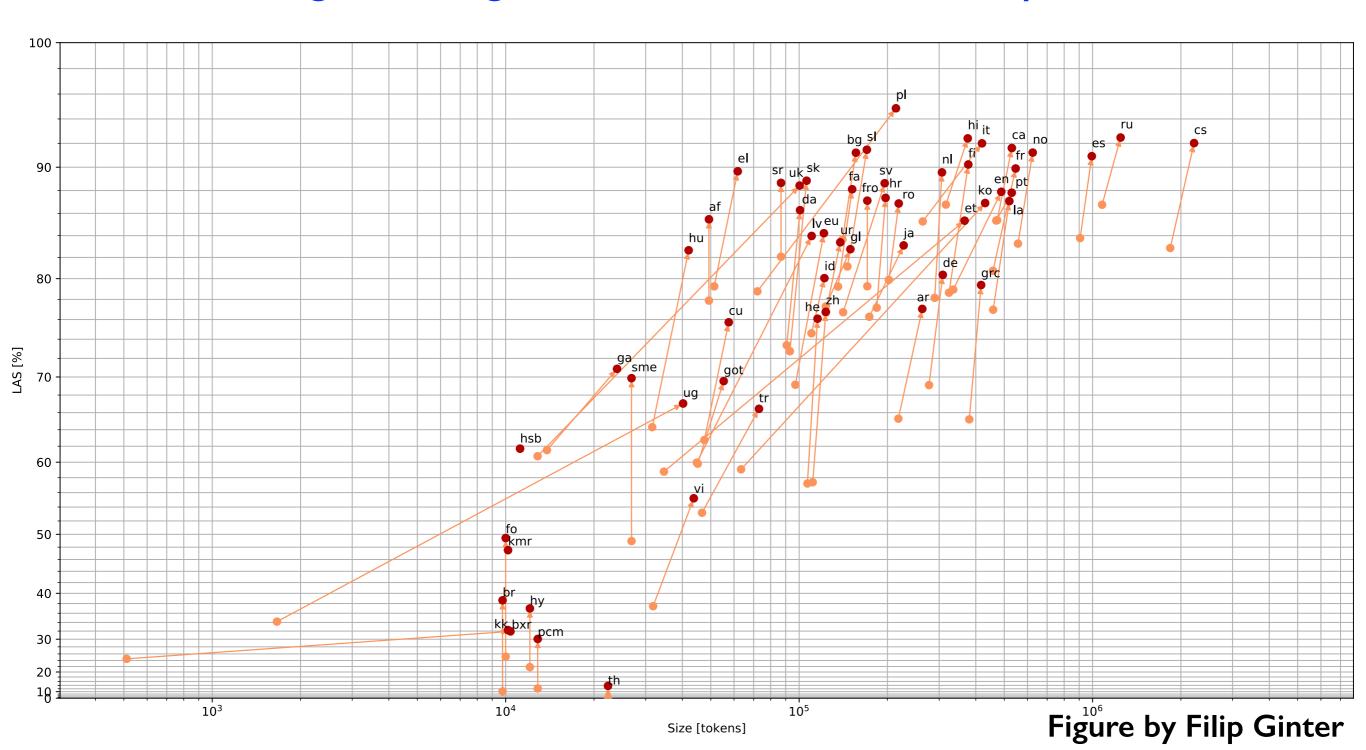
UD v2.5



Figure by Francis Tyers

CoNLL Shared Tasks 2017–18

Multilingual Parsing from Raw Text to Universal Dependencies



Three Case Studies

- Representing words characters, words, parts of speech
- Adding deep contextualized word representations
- Probing deep contextualized word representations

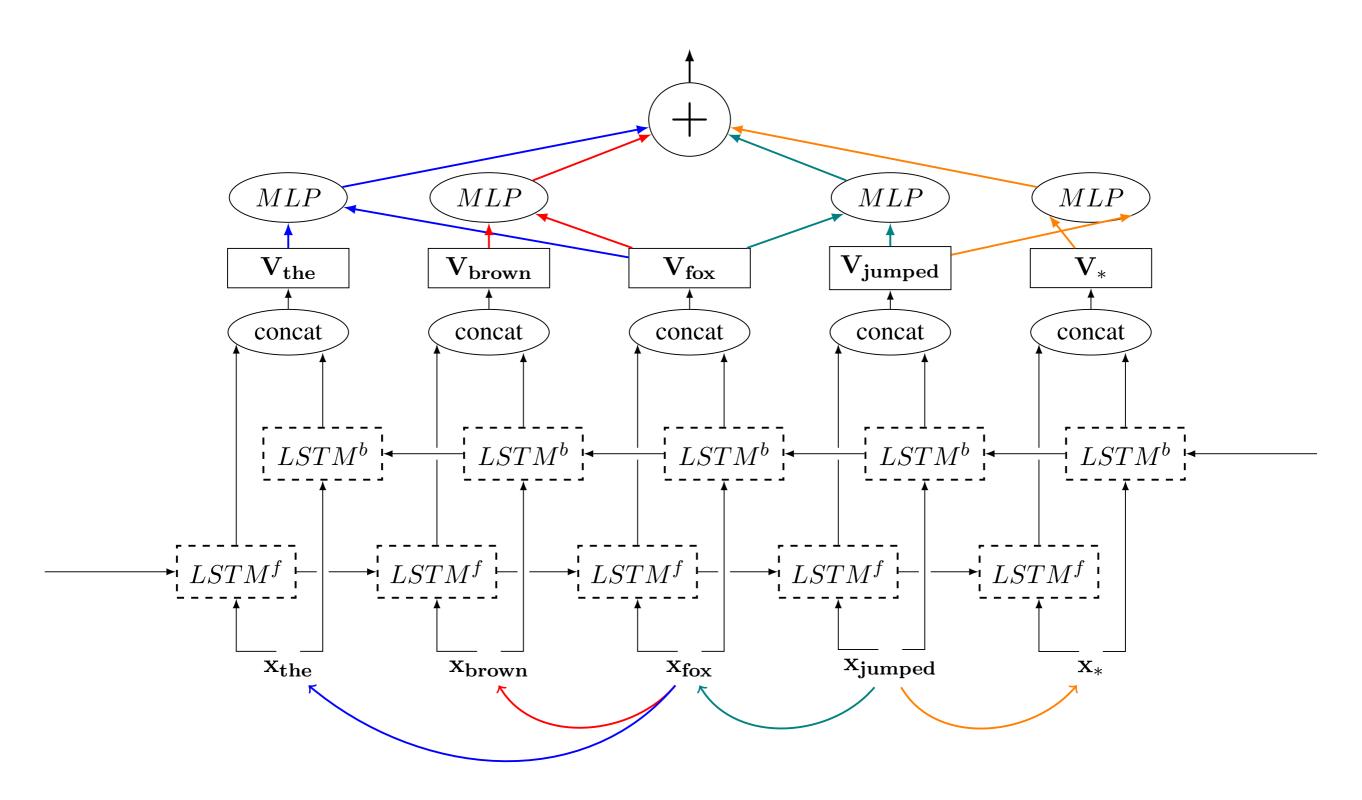
Uppsala Parsing Group

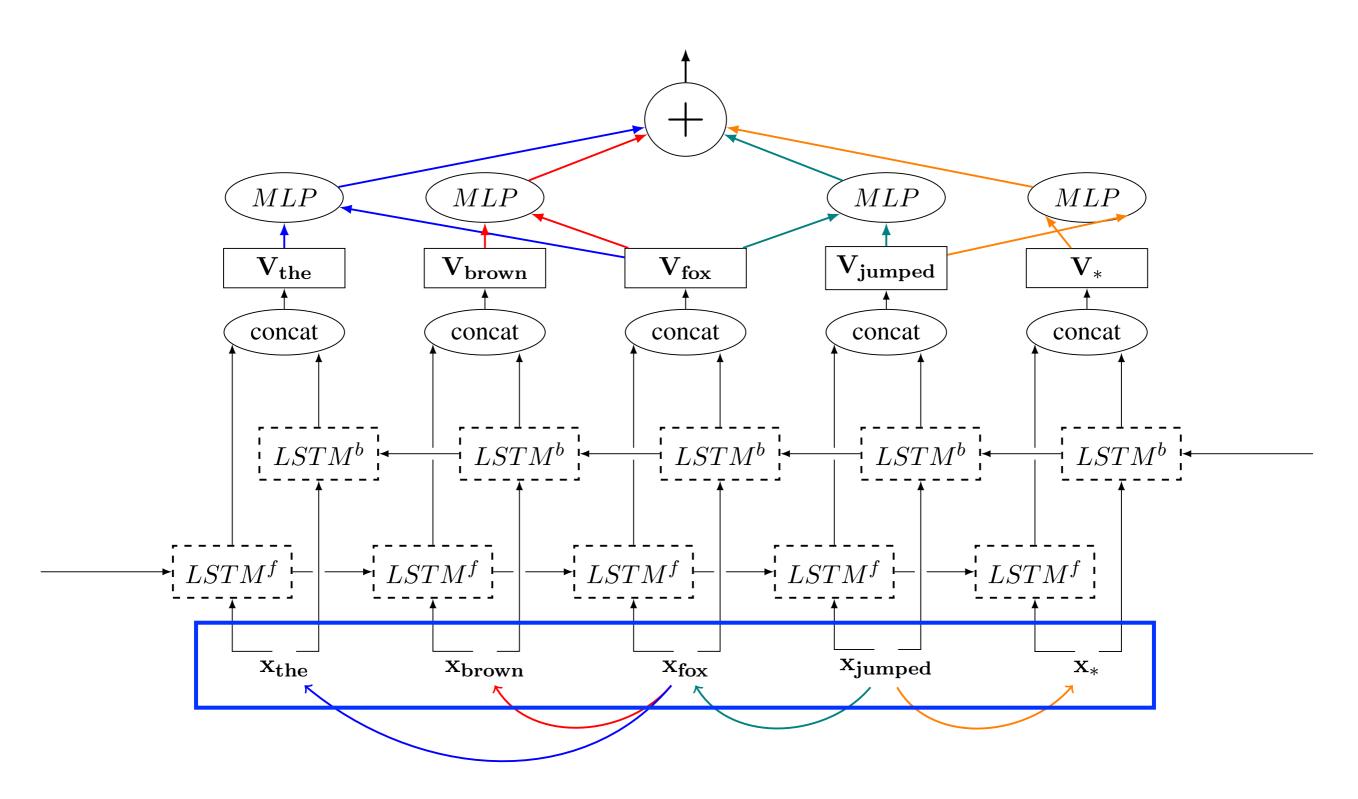
Sara Stymne

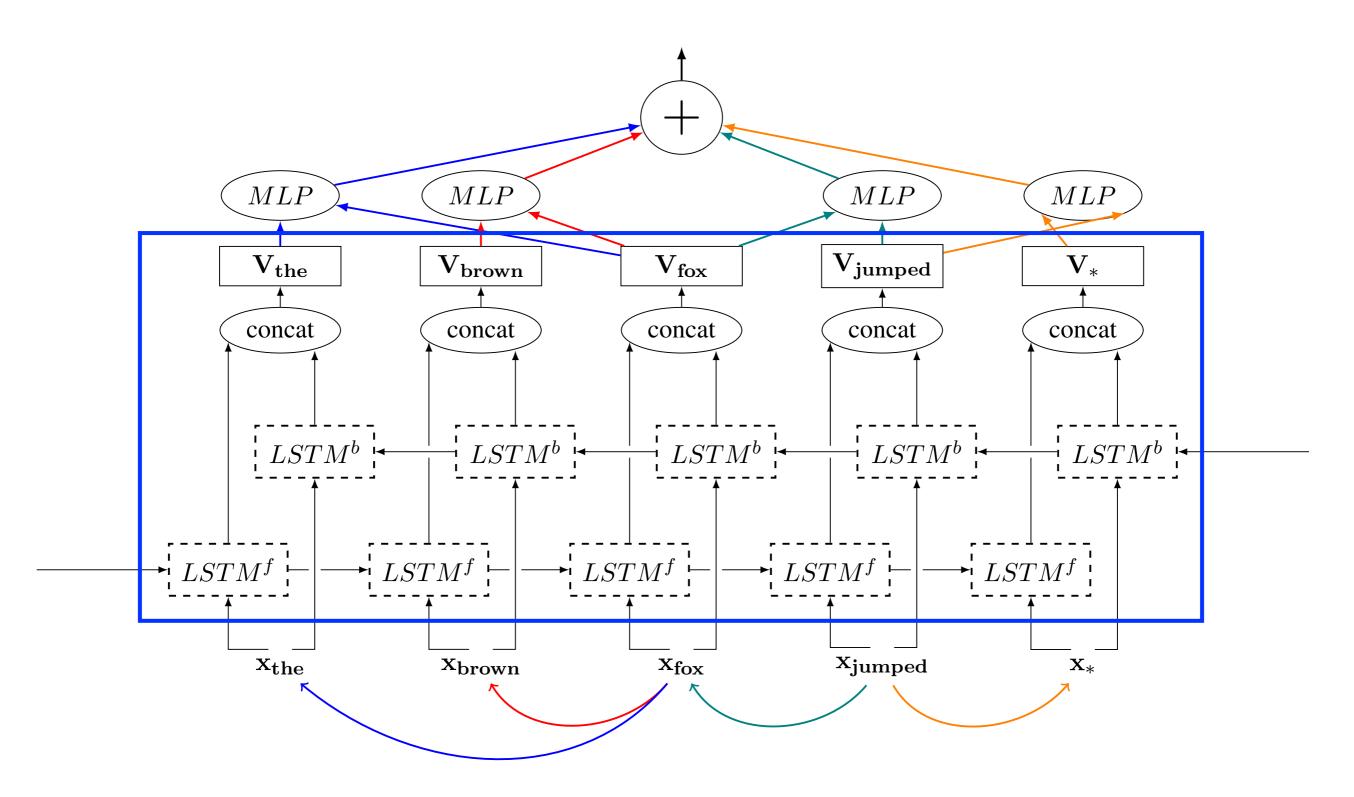
Aaron Smith

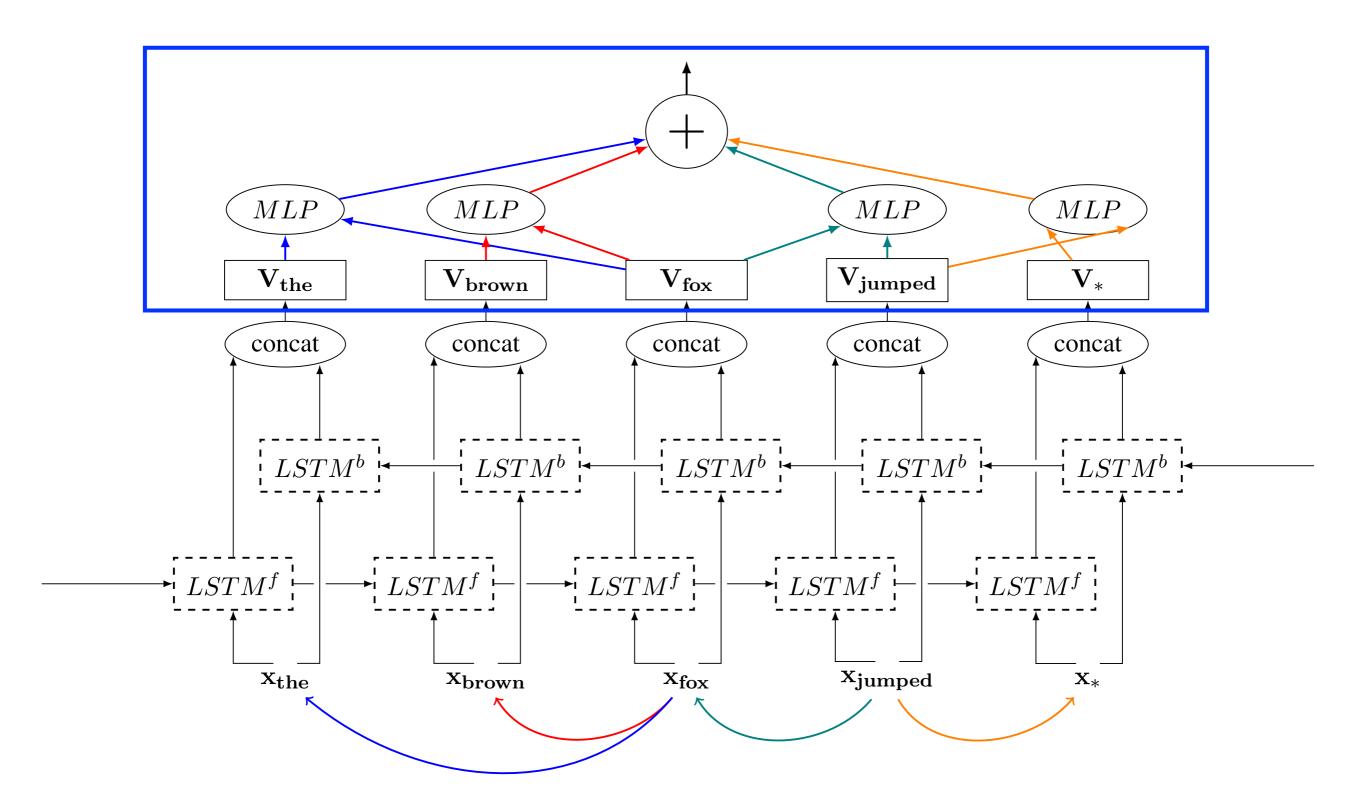
Miryam de Lhoneux

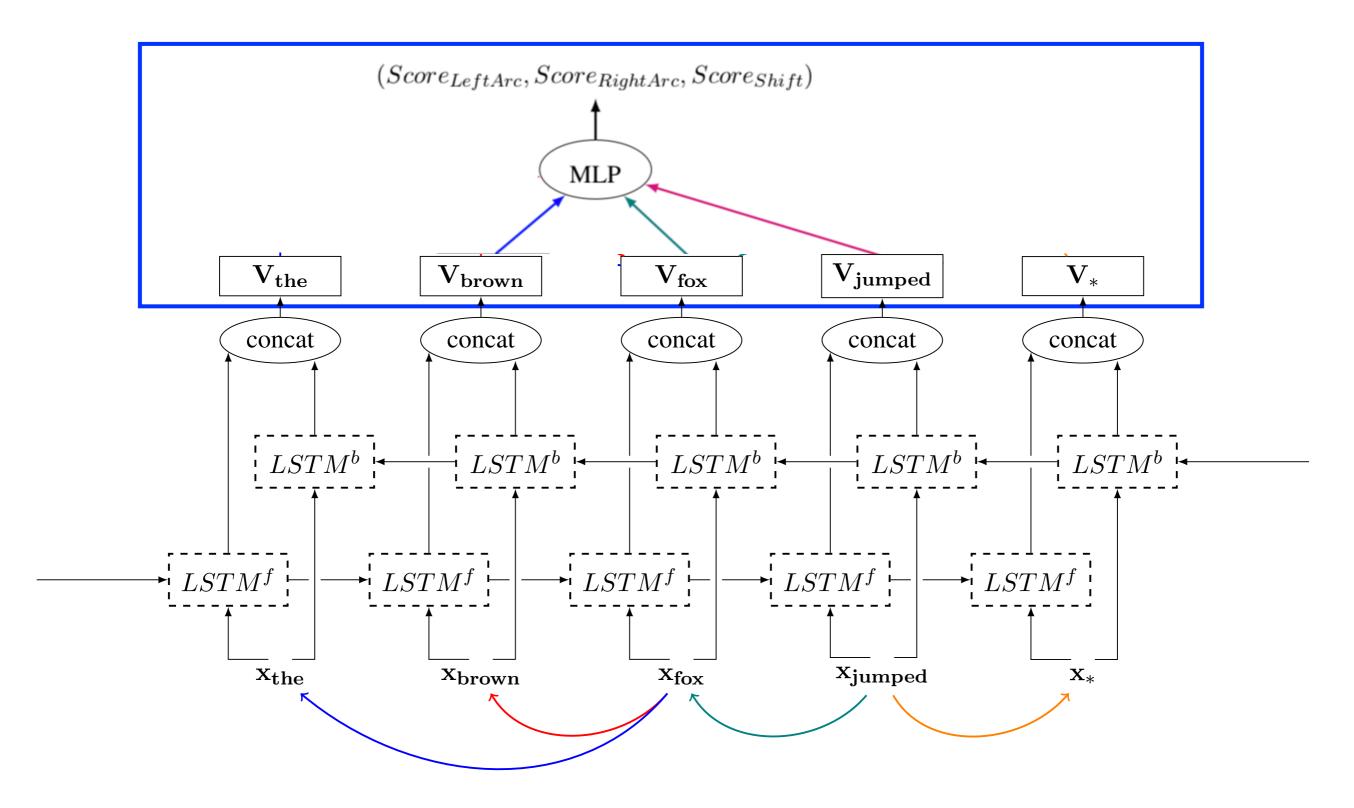
Artur Kulmizev







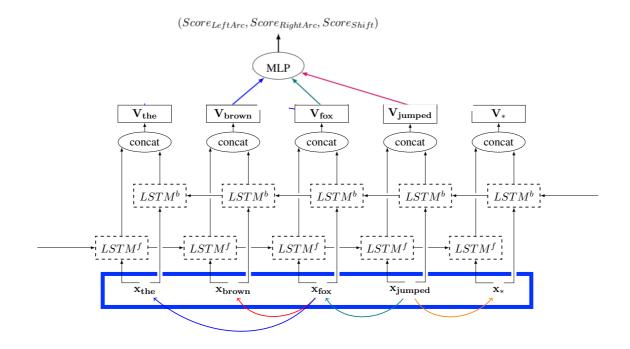


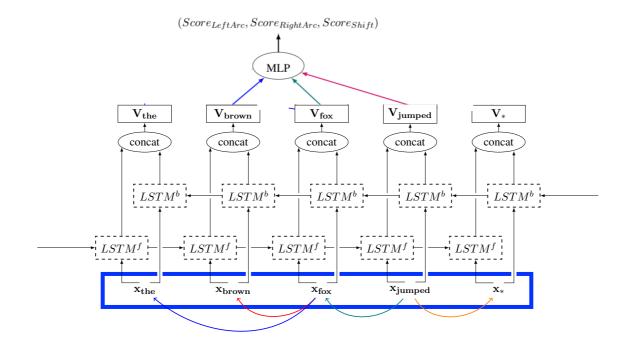


Representing Words

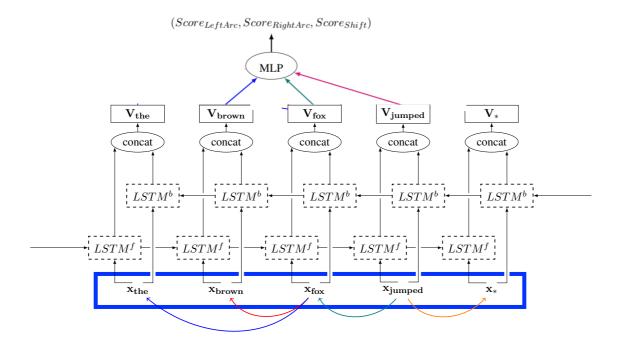
- How do parsers benefit from pre-trained word embeddings, character models and part-of-speech tags?
- Are the techniques complementary or redundant?
- How do results vary across word frequencies, word categories and languages?

Aaron Smith, Miryam de Lhoneux, Sara Stymne, and Joakim Nivre. 2018. An Investigation of the Interactions between Pre-Trained Word Embeddings, Character Models and PoS Tags in Dependency Parsing. In *Proceedings of EMNLP*.



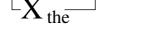


$$x_i = e^r(w_i)$$



$$x_i = e^r(w_i)$$

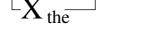
$$x_i = e^t(w_i) \circ \operatorname{BiLSTM}(ch_{1:m}) \circ e(p_i)$$



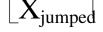
LX_{jumped}

baseline	67.7	combined	81.0
+EXT	76.1	-EXT	79.9
+CHAR	78.3	-CHAR	79.2
+POS	75.9	-POS	80.3

Treebank	Sente	nces	TTR	Chars
Ancient Greek	14864	1019	0.15	179
Arabic	6075	909	0.10	105
Chinese	3997	500	0.16	3571
English	12534	2002	0.07	108
Finnish	12217	1364	0.26	244
Hebrew	5241	484	0.11	53
Korean	4400	950	0.46	1730
Russian	3850	579	0.30	189
Swedish	4303	504	0.16	86

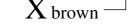


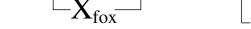
 $X \text{ brown} \longrightarrow X_{\text{fox}}$



baseline	67.7	combined	81.0
+EXT	76.1	-EXT	79.9
+CHAR	78.3	-CHAR	79.2
+POS	75.9	-POS	80.3

Treebank	Sente	nces	TTR	Chars
Ancient Greek	14864	1019	0.15	179
Arabic	6075	909	0.10	105
Chinese	3997	500	0.16	3571
English	12534	2002	0.07	108
Finnish	12217	1364	0.26	244
Hebrew	5241	484	0.11	53
Korean	4400	950	0.46	1730
Russian	3850	579	0.30	189
Swedish	4303	504	0.16	86

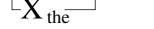


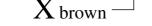


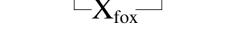
X_{jumped}

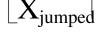
baseline	67.7	combined	81.0	
+EXT	76.1	-EXT	79.9	
+CHAR	78.3	-CHAR	79.2	
+POS	75.9	-POS	80.3	
				-

Treebank	Sente	nces	TTR	Chars
Ancient Greek	14864	1019	0.15	179
Arabic	6075	909	0.10	105
Chinese	3997	500	0.16	3571
English	12534	2002	0.07	108
Finnish	12217	1364	0.26	244
Hebrew	5241	484	0.11	53
Korean	4400	950	0.46	1730
Russian	3850	579	0.30	189
Swedish	4303	504	0.16	86





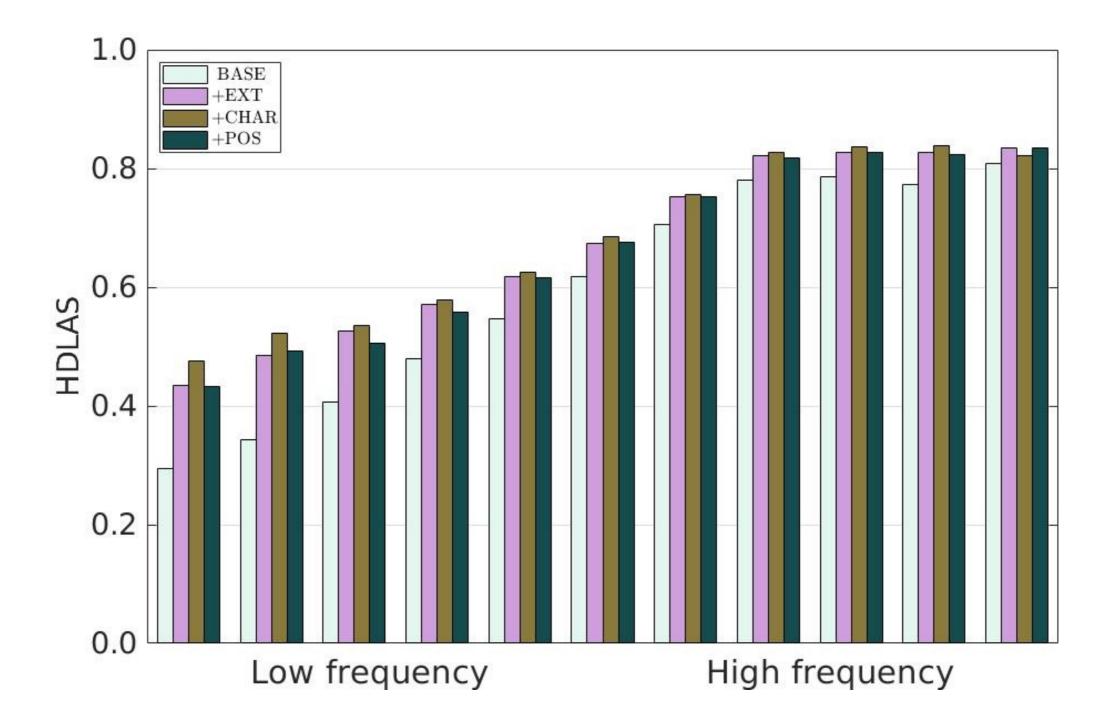




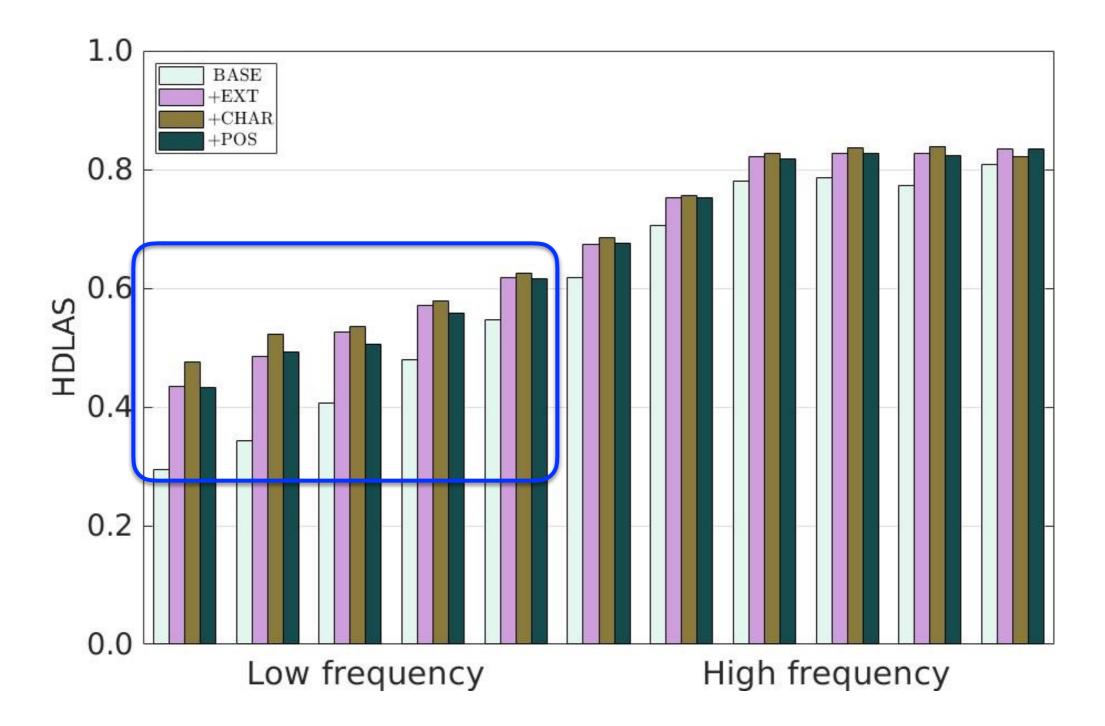
baseline	67.7	combined	81.0	
+EXT	76.1	-EXT	79.9	
+CHAR	78.3	-CHAR	79.2	
+POS	75.9	-POS	80.3	

Treebank	Sente	nces	TTR	Chars
Ancient Greek	14864 1019		0.15	179
Arabic	6075	909	0.10	105
Chinese	3997	500	0.16	3571
English	12534	2002	0.07	108
Finnish	12217	1364	0.26	244
Hebrew	5241	484	0.11	53
Korean	4400	950	0.46	1730
Russian	3850	579	0.30	189
Swedish	4303	504	0.16	86

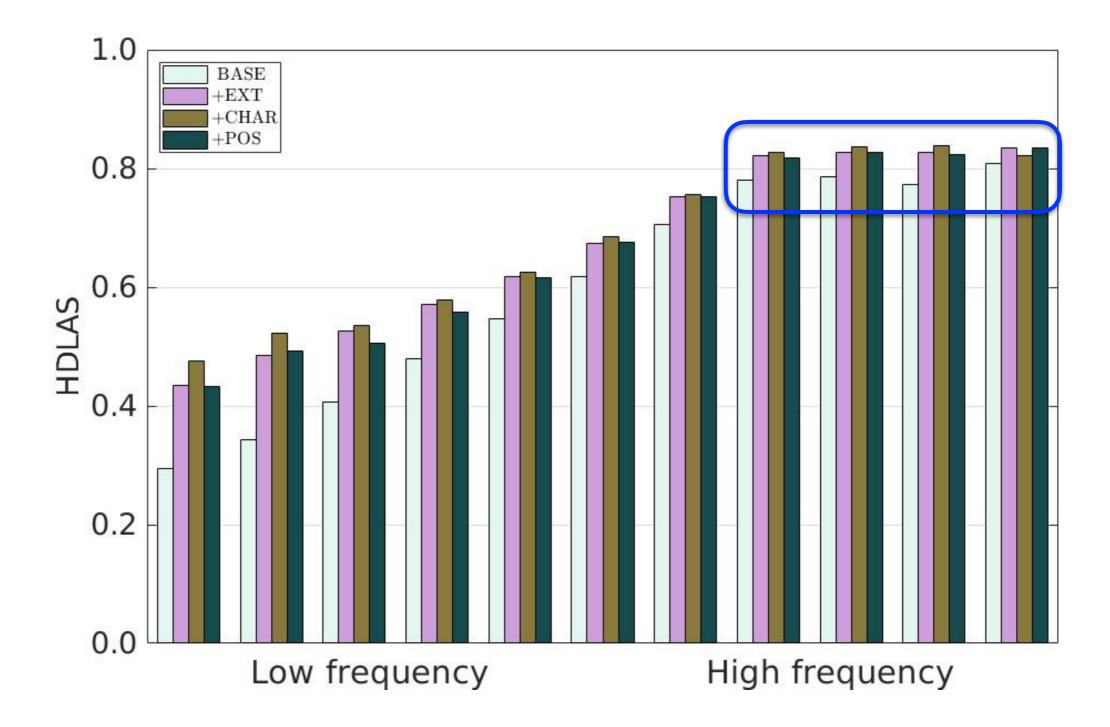
Results by Frequency



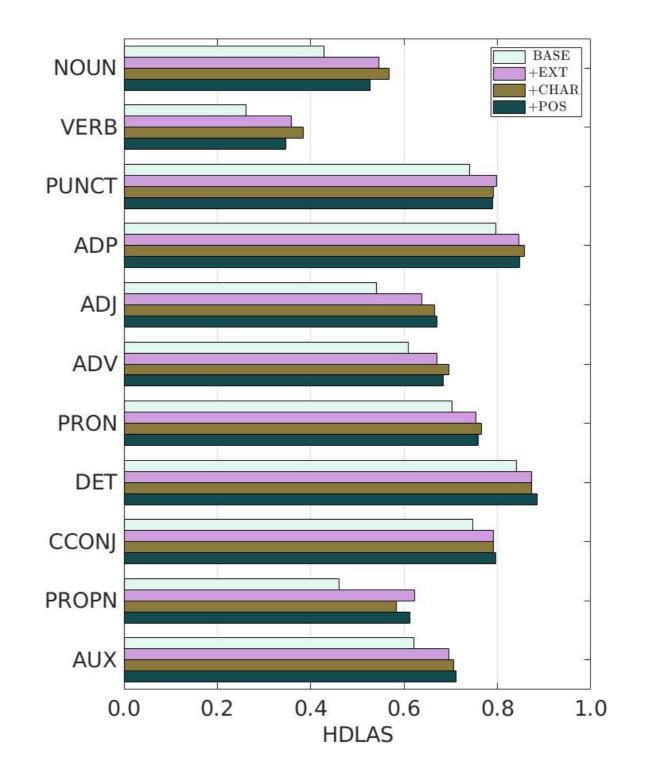
Results by Frequency



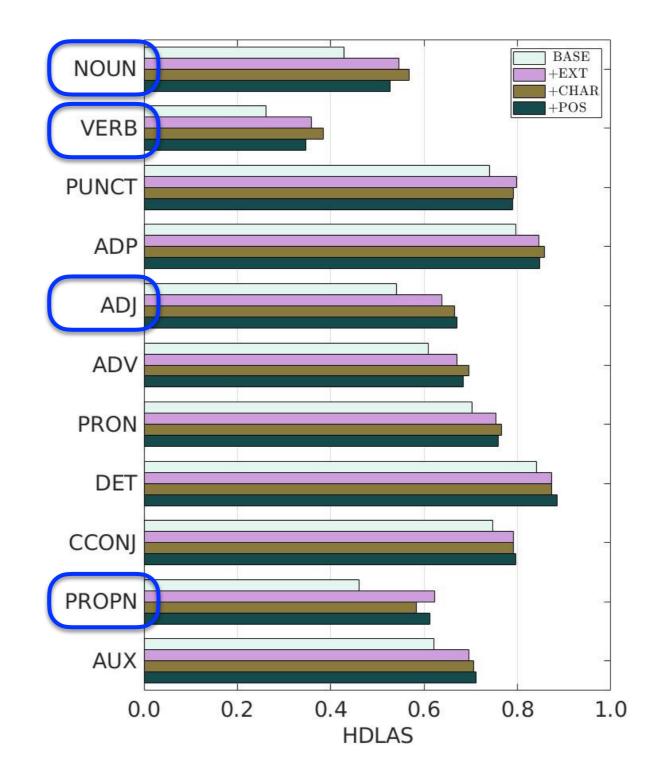
Results by Frequency



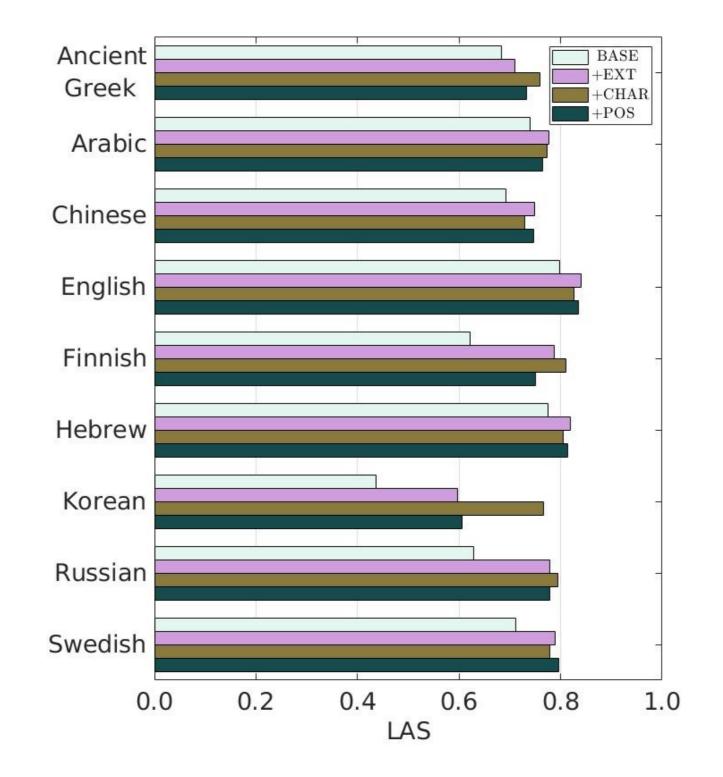
Results by PoS Tags



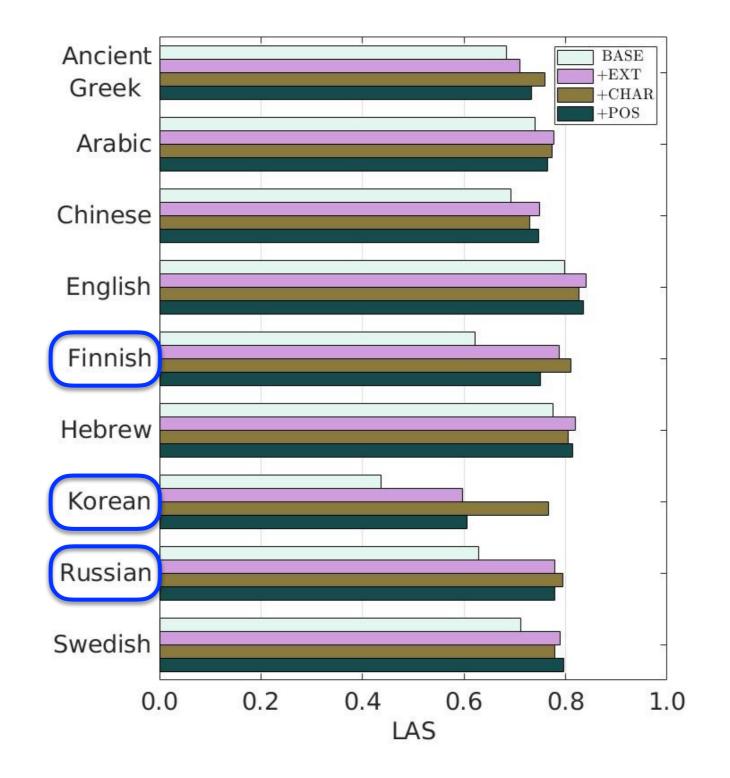
Results by PoS Tags



Results by Language



Results by Language



Main Findings

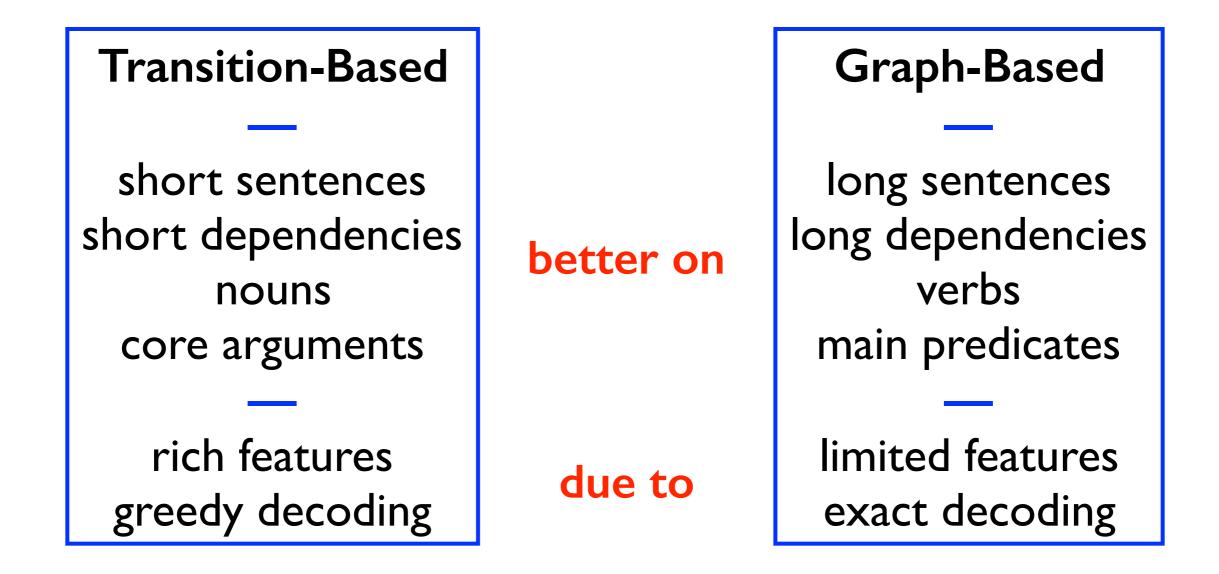
- We see the largest improvements for low-frequency and open-class words and for morphologically rich languages
- Techniques are mutually redundant, but character models are the most effective for low-frequency words
- Part-of-speech tags are potentially effective for highfrequency function words, but current taggers are not accurate enough to realize this potential

A Tale of Two Parsers

- Transition-based and graph-based dependency parsers are known to have distinctive error profiles
- Do these patterns persist in the presence of neural network techniques?
- Do deep contextualized word representations benefit transition-based parsers more than graph-based parsers?

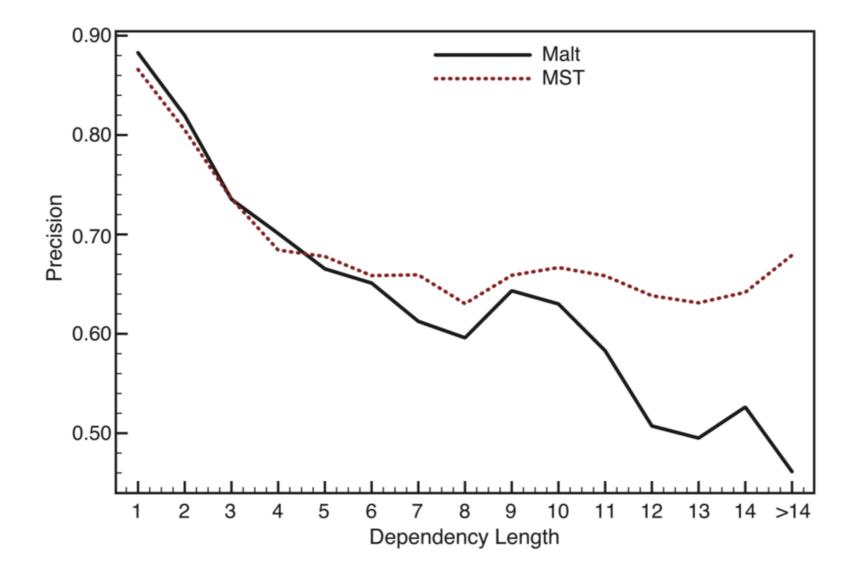
Artur Kulmizev, Miryam de Lhoneux, Johannes Gontrum, Elena Fano and Joakim Nivre 2019. Deep Contextualized Word Embeddings in Transition-Based and Graph-Based Dependency Parsing – A Tale of Two Parsers Revisited. In *Proceedings of EMNLP*.

Historical Background

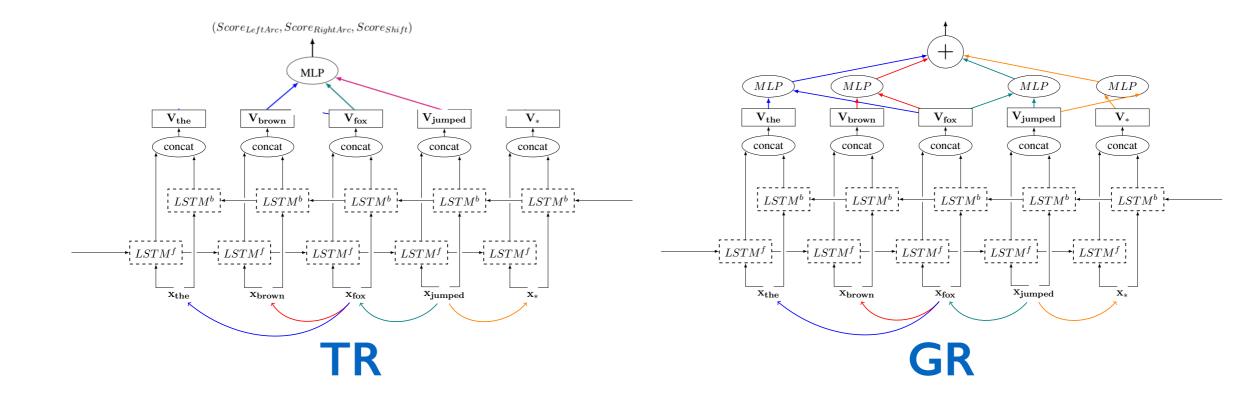


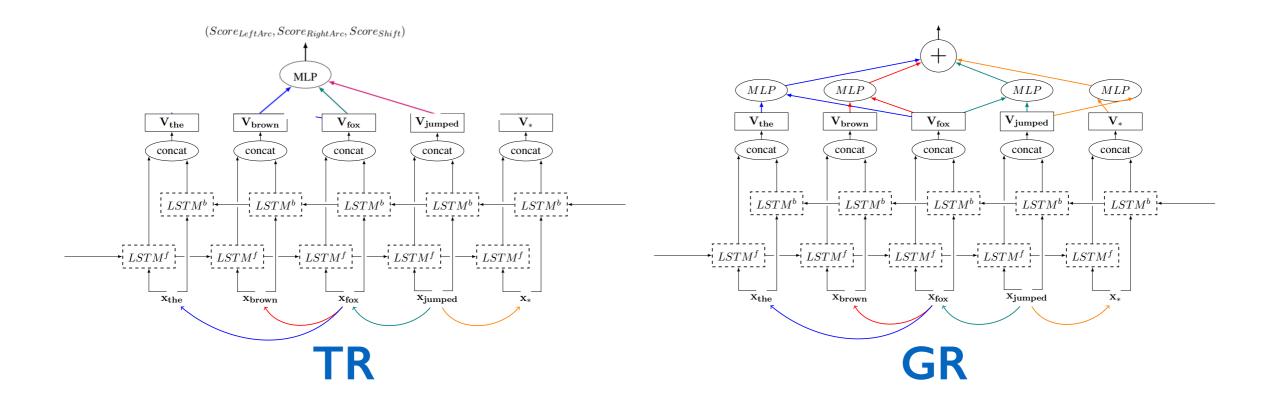
Ryan McDonald and Joakim Nivre. 2007. Characterizing the Errors of Data-Driven Dependency Parsing Models. In Proceedings of EMNLP, pages 122–131.

Historical Background

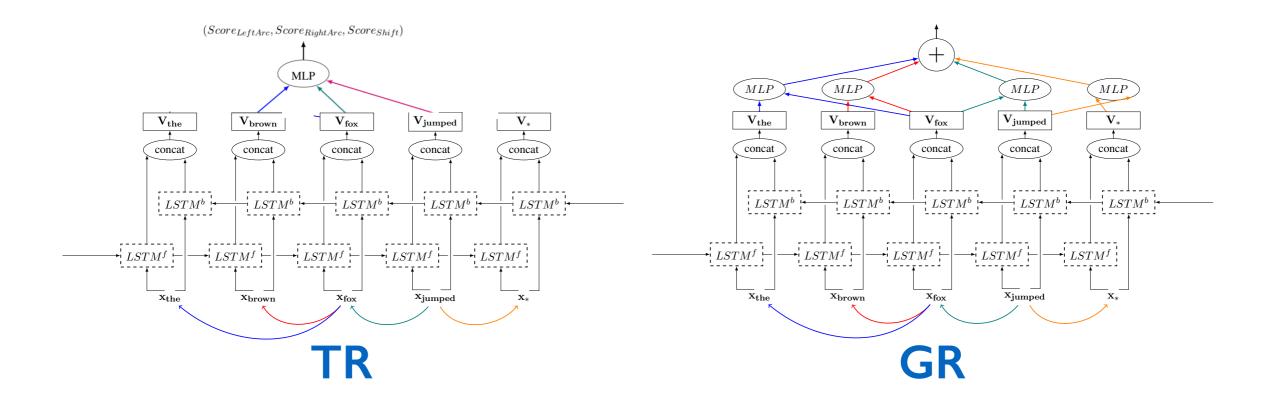


Ryan McDonald and Joakim Nivre. 2007. Characterizing the Errors of Data-Driven Dependency Parsing Models. In Proceedings of EMNLP, pages 122–131.





$$x_i = e^t(w_i) \circ \operatorname{BiLSTM}(ch_{1:m})$$



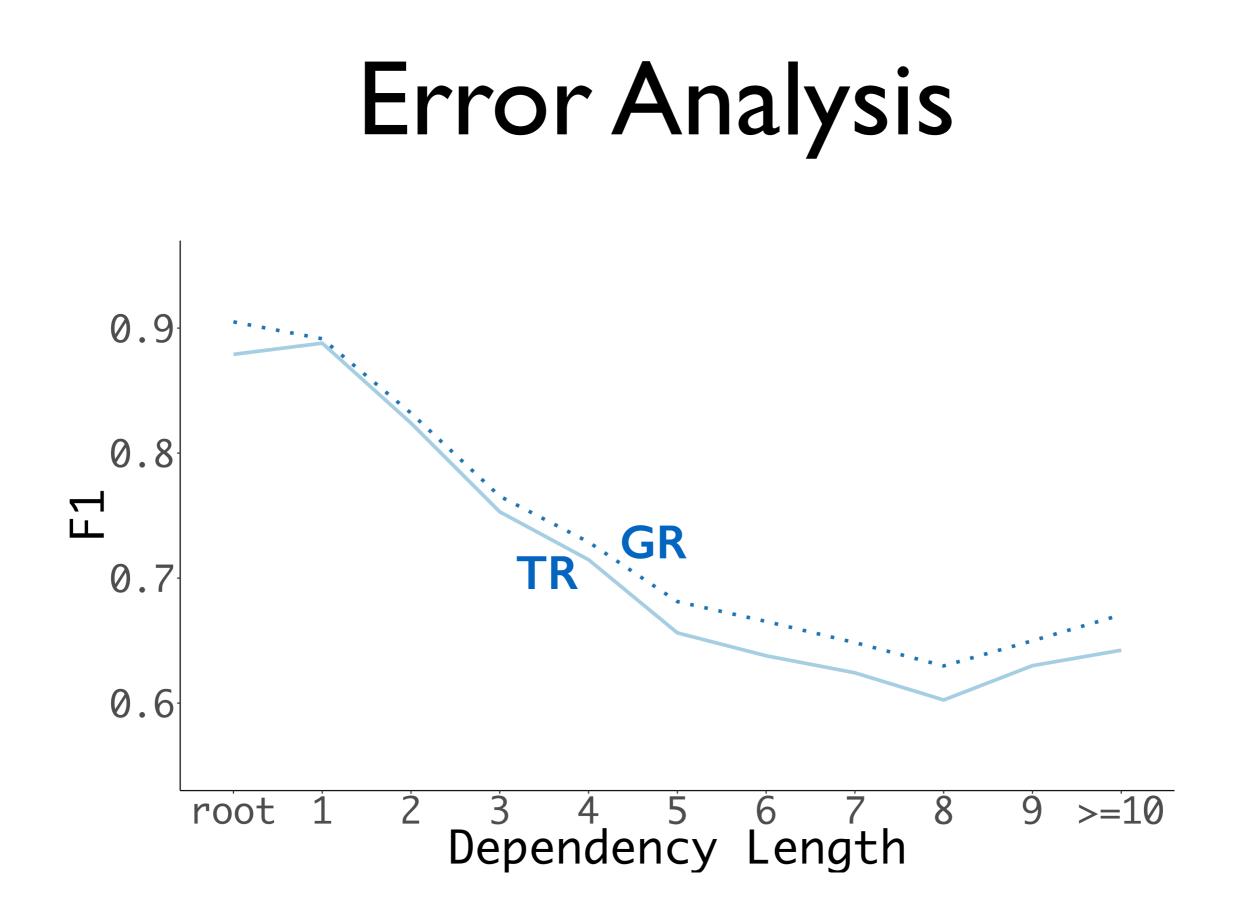
 $x_i = e^t(w_i) \circ \operatorname{BiLSTM}(ch_{1:m})$

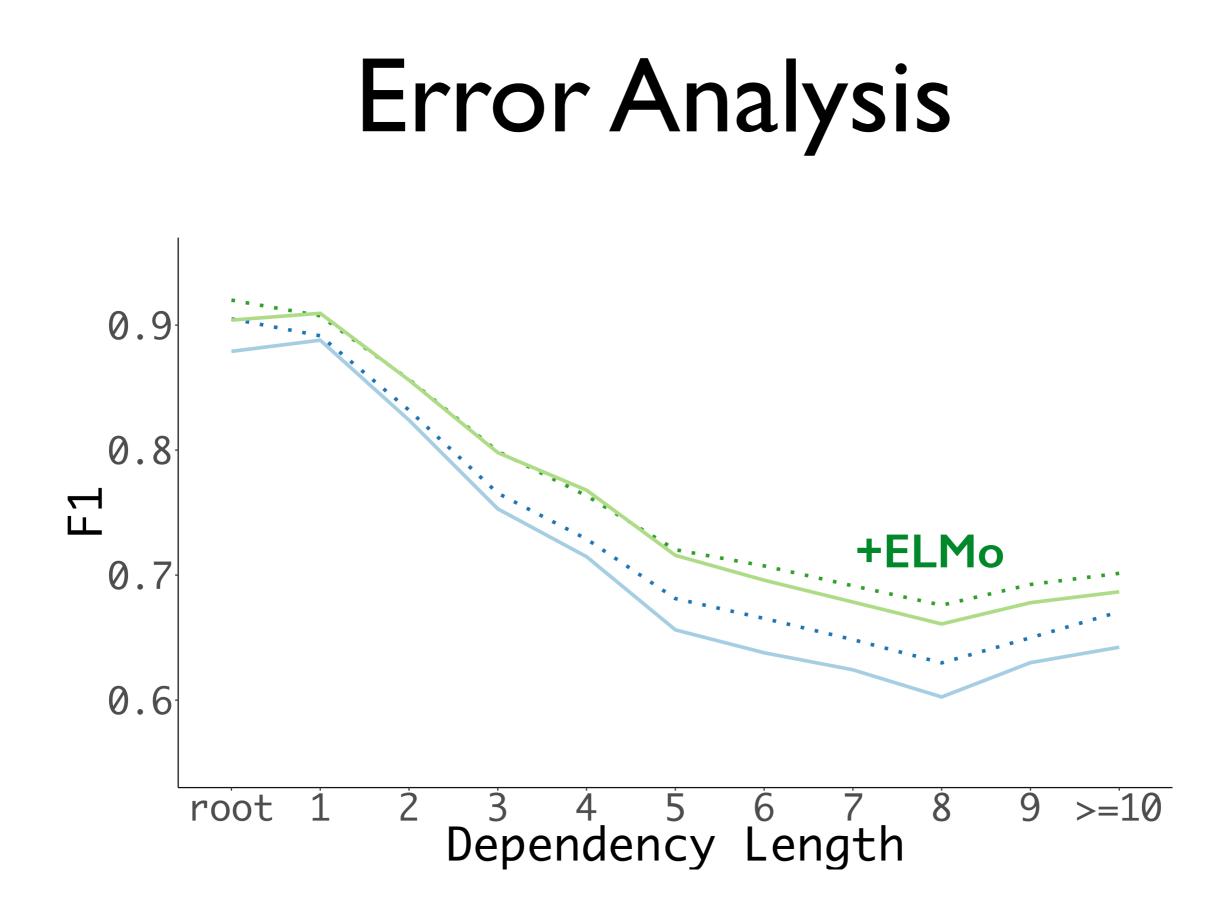
Language	e TR	GR 7	rr+E (GR+E	rr+B (GR+B
Arabic	79.1	79.9	82.0	81.7	81.9	81.8
Basque	73.6	77.6	80.1	81.4	77.9	79.8
Chinese	75.3	76.7	79.8	80.4	83.7	83.4
English	82.7	83.3	87.0	86.5	87.8	87.6
Finnish	80.0	81.4	87.0	86.6	85.1	83.9
Hebrew	81.1	82.4	85.2	85.9	85.5	85.9
Hindi	88.4	89.6	91.0	91.2	89.5	90.8
Italian	88.0	88.2	90.9	90.6	92.0	91.7
Japanese	92.1	92.2	93.1	93.0	92.9	92.1
Korean	79.6	81.2	82.3	82.3	83.7	84.2
Russian	88.3	88.0	90.7	90.6	91.5	91.0
Swedish	80.5	81.6	86.9	86.2	87.6	86.9
Turkish	57.8	61.2	62.6	63.8	64.2	64.9
Average	80.5	81.8	84.5	84.6	84.9	84.9

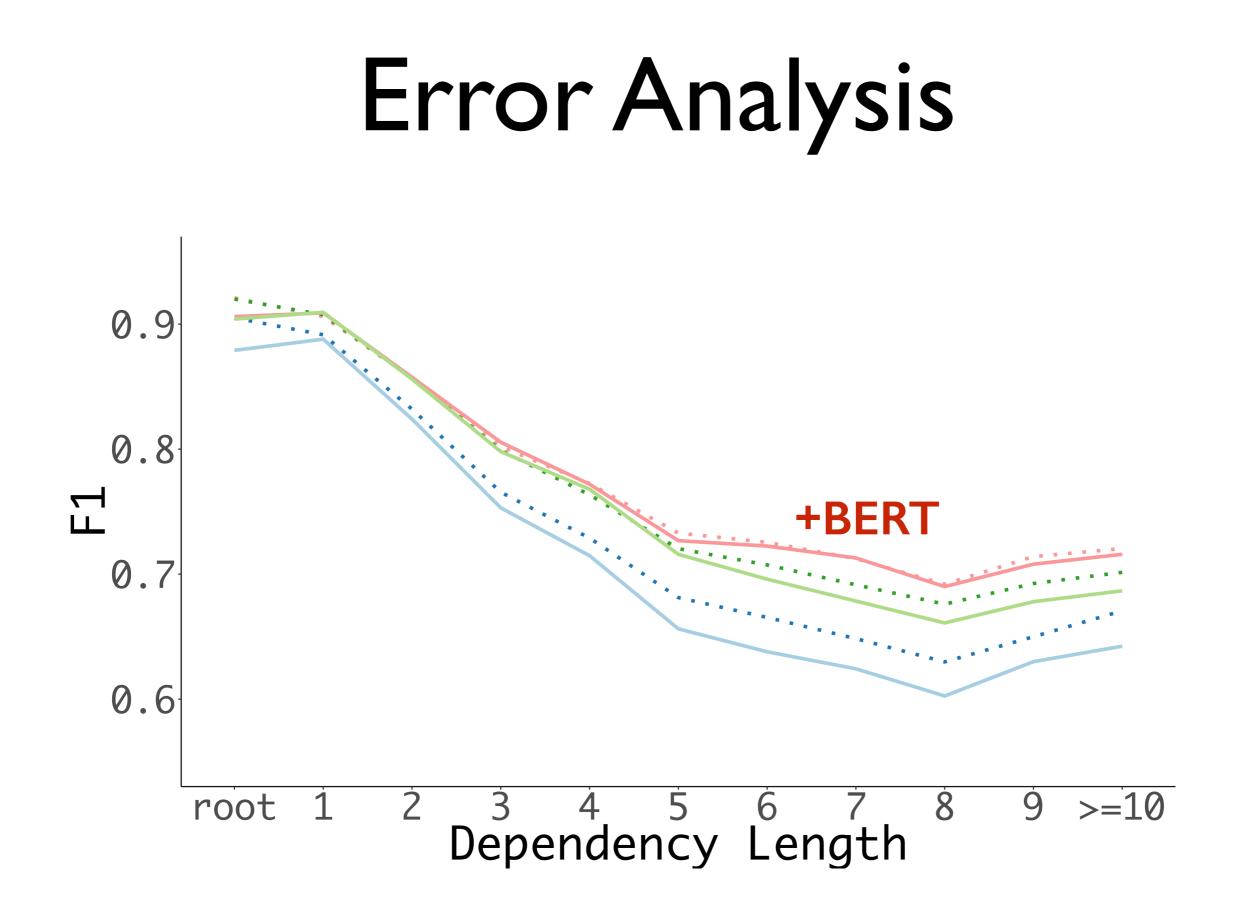
Language	e TR	GR '	tr+E (GR+E	TR+B (GR+B		
Arabic	79.1	79.9	82.0	81.7	81.9	81.8		
Basque	73.6	77.6	80.1	81.4	77.9	79.8		
Chinese	75.3	76.7	79.8	80.4	83.7	83.4		
English	82.7	83.3	87.0	86.5	87.8	87.6		
Finnish	80.0	81.4	87.0	86.6	85.1	83.9		
Hebrew	81.1	82.4	85.2	85.9	85.5	85.9		
Hindi	88.4	89.6	91.0	91.2	89.5	90.8		
Italian	88.0	88.2	90.9	90.6	92.0	91.7		
Japanese	92.1	92.2	93.1	93.0	92.9	92.1		
Korean	79.6	81.2	82.3	82.3	83.7	84.2		
Russian	88.3	88.0	90.7	90.6	91.5	91.0		
Swedish	80.5	81.6	86.9	86.2	87.6	86.9		
Turkish	57.8	61.2	62.6	63.8	64.2	64.9		
Average	80.5	81.8	84.5	84.6	84.9	84.9		
	+3.99 +2.85							

Results

Language	e TR	GR 7	rr+Ε (GR+E	rr+B (GR+B
Arabic	79.1	79.9	82.0	81.7	81.9	81.8
Basque	73.6	77.6	80.1	81.4	77.9	79.8
Chinese	75.3	76.7	79.8	80.4	83.7	83.4
English	82.7	83.3	87.0	86.5	87.8	87.6
Finnish	80.0	81.4	87.0	86.6	85.1	83.9
Hebrew	81.1	82.4	85.2	85.9	85.5	85.9
Hindi	88.4	89.6	91.0	91.2	89.5	90.8
Italian	88.0	88.2	90.9	90.6	92.0	91.7
Japanese	92.1	92.2	93.1	93.0	92.9	92.1
Korean	79.6	81.2	82.3	82.3	83.7	84.2
Russian	88.3	88.0	90.7	90.6	91.5	91.0
Swedish	80.5	81.6	86.9	86.2	87.6	86.9
Turkish	57.8	61.2	62.6	63.8	64.2	64.9
Average	80.5	81.8	84.5	84.6	84.9	84.9
		+4.47 +3.13				





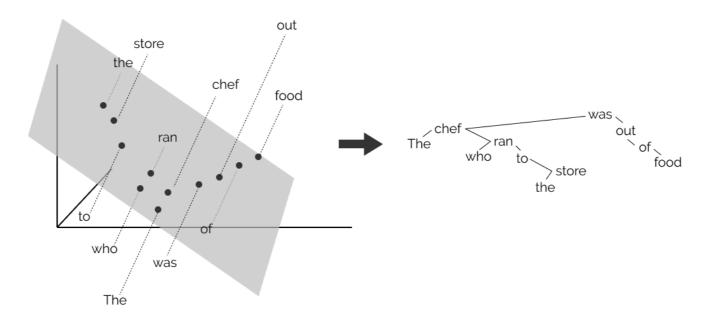


Main Findings

- The distinctive error profiles of transition-based and graph-based parsers are still visible but less pronounced
- Deep contextualized word representations improve transition-based parsers more than graph-based parsers and eliminate most of the differences
- These patterns are remarkably consistent across languages in a typologically diverse sample

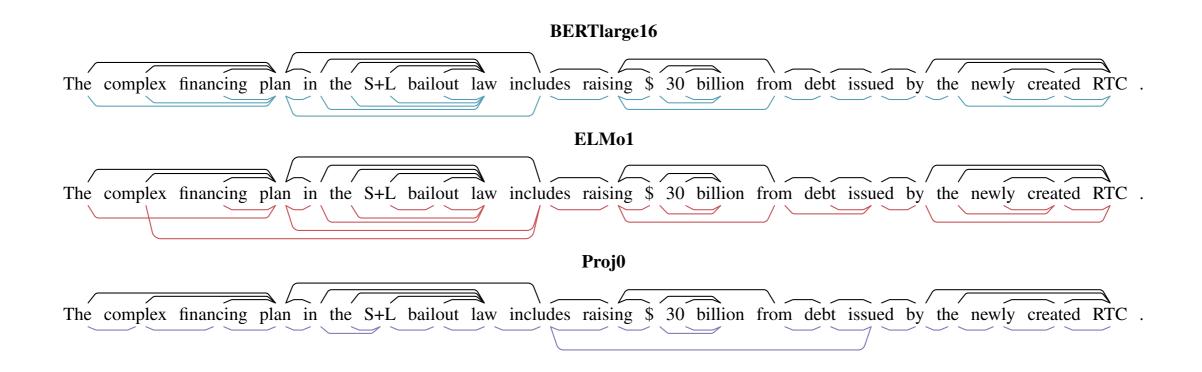
Do we need parsers at all?

- Do the vector spaces of deep contextualized word representations encode parse trees implicitly?
- Learn linear transform such that distance encodes tree distance and norm encodes tree depth

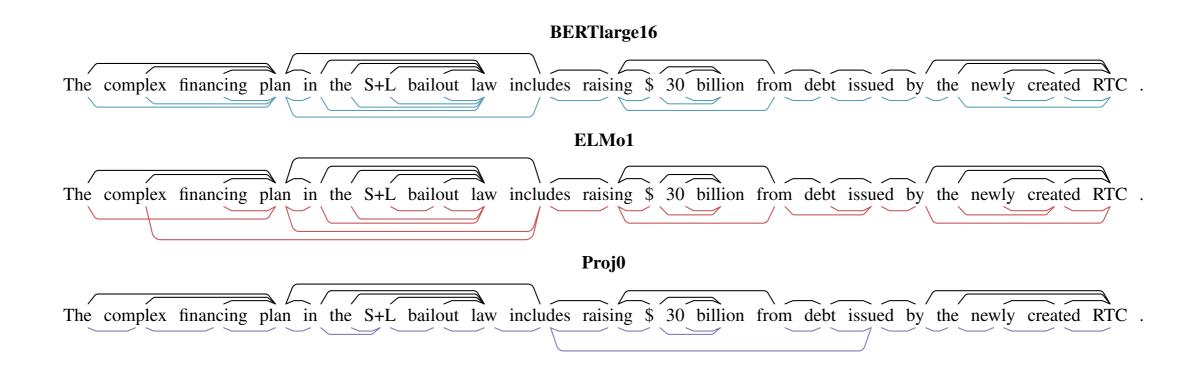


John Hewitt and Christopher D. Manning 2019. A Structural Probe for Finding Syntax in Word Representations. In *Proceedings of NAACL*, pages 4129–4138.

Almost Dependency Parsing



Almost Dependency Parsing



- How can we extract rooted directed dependency trees?
- How do results vary across different languages?

Directed Dependency Trees

- Derive (directed) arc scores from distances and depths
- Extract maximum spanning tree using the CLE algorithm

Directed Dependency Trees

- Derive (directed) arc scores from distances and depths
- Extract maximum spanning tree using the CLE algorithm

$$score(w_i, w_j) = \begin{cases} -dist(w_i, w_j) & \text{if } depth(w_i) < depth(w_j) \\ -\infty & \text{otherwise} \end{cases}$$

Directed Dependency Trees

- Derive (directed) arc scores from distances and depths
- Extract maximum spanning tree using the CLE algorithm

$$score(w_i, w_j) = \begin{cases} -dist(w_i, w_j) & \text{if } depth(w_i) < depth(w_j) \\ -\infty & \text{otherwise} \end{cases}$$

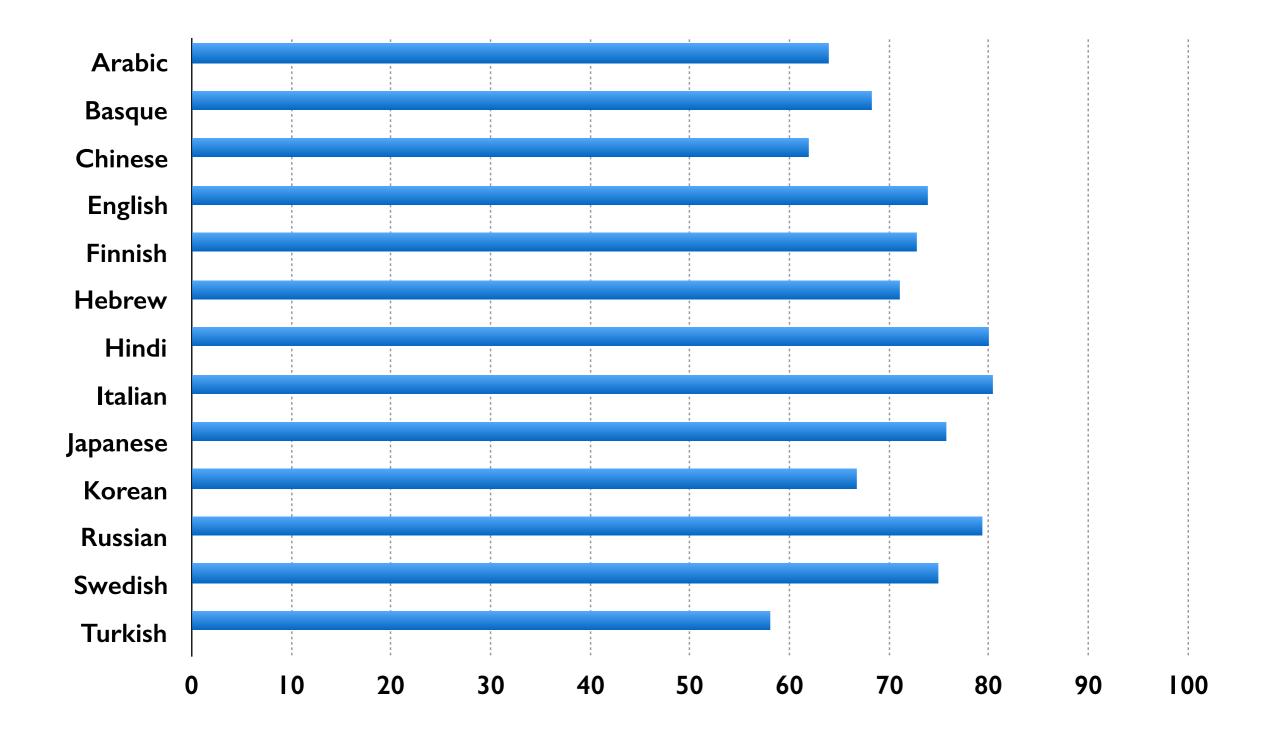
- Shorter distances correspond to higher arc scores
- Arcs from lower to higher nodes are excluded

Experimental Setup

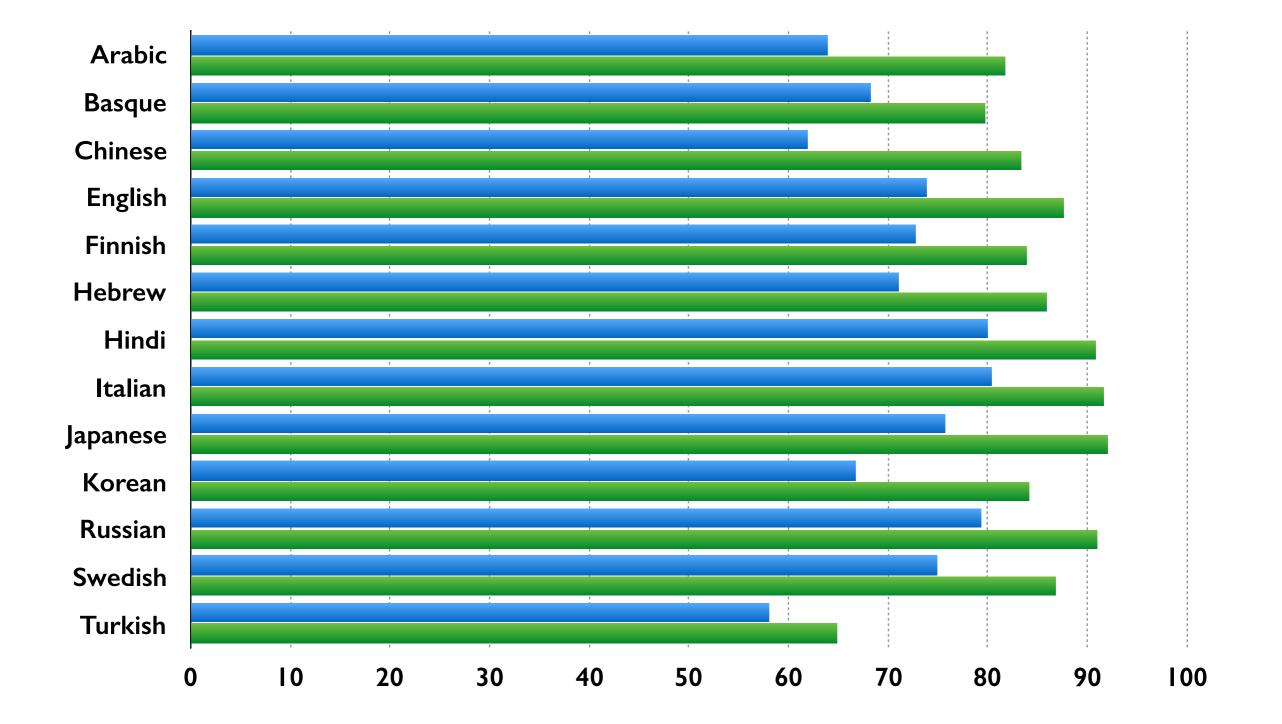
- Multilingual BERT
- Fit probe on each of BERT's twelve layers
- Learn weighted average across all layers
- Evaluate on same 13 UD languages as in previous studies

Mean UAS = 71.3

Results



Mean UAS = 71.3 Results Mean LAS = 84.9

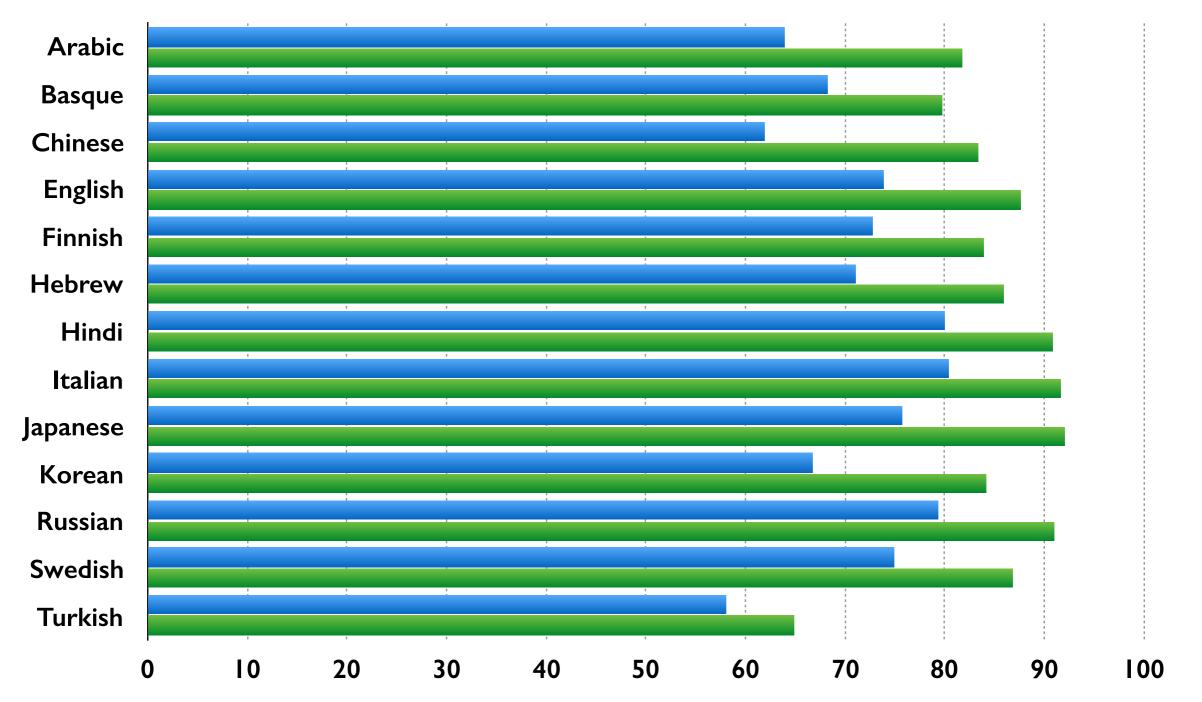


Mean UAS = 71.3

Results

Mean LAS = 84.9

Pearson's r = 0.49



Main Findings

- We can extract directed dependency trees from deep contextualized word representations
- Correspondence with treebank trees is substantially lower than for supervised parsers
- Variation across languages correlate with supervised parsing results

• Deep neural language models learn aspects of syntax

- Deep neural language models learn aspects of syntax
- Convergence across parsing models and algorithms

- Deep neural language models learn aspects of syntax
- Convergence across parsing models and algorithms
- No corresponding convergence across languages

- Deep neural language models learn aspects of syntax
- Convergence across parsing models and algorithms
- No corresponding convergence across languages
- A multilingual perspective is still important

- Deep neural language models learn aspects of syntax
- Convergence across parsing models and algorithms
- No corresponding convergence across languages
- A multilingual perspective is still important
- UD as a touchstone for parsing and probing studies