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• Transparent encoding of predicate-argument structure
• Simple and efficient computational models
• Compatible with linguistic traditions around the world
• Multilingual research tradition from CoNLL 2006–2007



CoNLL-X Shared Task
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• First shared task on multilingual dependency parsing
• Data from heterogeneous treebanks in 13 languages
• Standardized into a single unified format (CoNLL-X)
• Enabled a new line of multilingual research
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• Amount of data – weak predictor overall 

• Text types – important but hard to measure

• Language types – analytical versus synthetic

• Annotation – different descriptive traditions

Why the Differences?
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Part-of-speech tags
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Part-of-speech tags Morphological features
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Part-of-speech tags Morphological features

Syntactic relations
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Who?

Open community effort – a big tent

UD v2.5: 90 languages, 157 treebanks, 345 contributors

Come join us at http://universaldependencies.org

http://universaldependencies.org
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Complement – not replace – language-specific schemes
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Focus on grammatical relations between (content) words

the dog chased the cat from the room

koira jahtasi kissan huoneesta

nsubj

nsubj

obj

obj

obl

obl
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Morphology

• Lemma representing the semantic content of the word

• Part-of-speech tag representing its grammatical class

• Features representing lexical and grammatical properties 
of the lemma or the particular word form
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• Function words attach to the content word they modify
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• Content words are linked by grammatical relations

• Function words attach to the content word they modify
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Syntax
Nominal Clause Modifier
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Three Case Studies
• Representing words – characters, words, parts of speech 

• Adding deep contextualized word representations 

• Probing deep contextualized word representations
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Figure 2: Illustration of the neural model scheme of the graph-based parser when calculating the score of a given parse
tree. The parse tree is depicted below the sentence. Each dependency arc in the sentence is scored using an MLP that
is fed the BiLSTM encoding of the words at the arc’s end points (the colors of the arcs correspond to colors of the
MLP inputs above), and the individual arc scores are summed to produce the final score. All the MLPs share the same
parameters. The figure depicts a single-layer BiLSTM, while in practice we use two layers. When parsing a sentence,
we compute scores for all possible n

2 arcs, and find the best scoring tree using a dynamic-programming algorithm.

scoring parse tree y in the space Y(s) of valid de-
pendency trees over s. In order to make the search
tractable, the scoring function is decomposed to the
sum of local scores for each part independently.

In this work, we focus on arc-factored graph
based approach presented in McDonald et al. (2005).
Arc-factored parsing decomposes the score of a tree
to the sum of the score of its head-modifier arcs
(h,m):

parse(s) = argmax
y2Y(s)

X

(h,m)2y

score
�
�(s, h,m)

�

Given the scores of the arcs the highest scoring pro-
jective tree can be efficiently found using Eisner’s
decoding algorithm (1996). McDonald et al. and
most subsequent work estimate the local score of an
arc by a linear model parameterized by a weight vec-
tor w, and a feature function �(s, h,m) assigning a
sparse feature vector for an arc linking modifier m
to head h. We follow Pei et al. (2015) and replace
the linear scoring function with an MLP.

The feature extractor �(s, h,m) is usually com-
plex, involving many elements (see Section 2.1).
In contrast, our feature extractor uses merely the
BiLSTM encoding of the head word and the mod-

ifier word:

�(s, h,m) = BIRNN(x1:n, h) � BIRNN(x1:n,m)

The final model is:

parse(s) = argmax
y2Y(s)

scoreglobal(s, y)

= argmax
y2Y(s)

X

(h,m)2y

score
�
�(s, h,m)

�

= argmax
y2Y(s)

X

(h,m)2y

MLP (vh � vm)

vi = BIRNN(x1:n, i)

The architecture is illustrated in Figure 2.

Training The training objective is to set the score
function such that correct tree y is scored above in-
correct ones. We use a margin-based objective (Mc-
Donald et al., 2005; LeCun et al., 2006), aiming to
maximize the margin between the score of the gold
tree y and the highest scoring incorrect tree y

0. We
define a hinge loss with respect to a gold tree y as:
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Representing Words

• How do parsers benefit from pre-trained word 
embeddings, character models and part-of-speech tags?

• Are the techniques complementary or redundant?

• How do results vary across word frequencies, word 
categories and languages?

Aaron Smith, Miryam de Lhoneux, Sara Stymne, and Joakim Nivre. 2018.  
An Investigation of the Interactions between Pre-Trained Word Embeddings,  

Character Models and PoS Tags in Dependency Parsing. In Proceedings of EMNLP.
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Experimental Setup

systematically varying the input representation xi of a word
wi. In the simplest model, xi is equal to a randomly initial-
ized word embedding er(wi):

xi = er(wi) (1)

In the most complex model, the randomly initialized em-
bedding is replaced by a pre-trained embedding et(wi),
which is concatenated with a character-based vector
BiLSTM(ch1:m), obtained by running a BiLSTM over the
characters ch1:m of wi, and an embedding e(pi) of the
word’s universal part-of-speech tag (Nivre et al., 2016):

xi = et(wi) ◦ BiLSTM(ch1:m) ◦ e(pi) (2)

In addition to the simplest and most complex models, we
test all combinations of one and two enhancements in ex-
periments on nine treebanks from Universal Dependen-
cies (Nivre et al., 2016) (v2.0): Ancient Greek (PROIEL),
Arabic (PADT), Chinese (GSD), English (EWT), Finnish
(TDT), Hebrew (HTB), Korean (GSD), Russian (GSD) and
Swedish (Talbanken). Our main findings can be summa-
rized as follows:

• For all techniques, improvements are largest for low-
frequency and open-class words and for morphologi-
cally rich languages.

• These improvements are largely redundant when the
techniques are used together.

• Character-based models are the most effective tech-
nique for low-frequency words.

• Part-of-speech tags are potentially effective for high-
frequency function words, but current state-of-the-art
taggers are not accurate enough to fully exploit this.

• Large character embeddings are helpful in morpholog-
ically rich languages, regardless of character set size.

4. Multi-Treebank Models
When training parsers, we sometimes want to combine (an-
notated) data from multiple, heterogeneous sources. In a
monolingual setting, we may have access to treebanks con-
taining different text genres or annotated in slightly differ-
ent styles. In a multilingual setting, we may want to com-
bine training data from multiple languages in order to im-
prove parsing accuracy for low-resource languages. Simply
concatenating the training sets, however, is unlikely to give
optimal performance and often results in degraded perfor-
mance. In recent work, we have explored the use of tree-
bank embeddings for parser training with heterogeneous
treebanks, generalizing the language embeddings of Am-
mar et al. (2016) to apply not only in multilingual but also
in monolingual settings.

The basic idea is to add a treebank embedding e(tbi) to
the input vector xi associated with each token wi:

xi = et(wi) ◦ BiLSTM(ch1:m) ◦ e(pi) ◦ e(tbi) (3)

At training time, the treebank embeddings allow the parser
to learn from multiple treebanks while remaining sensitive
to the idiosyncracies of each one. At parsing time, we can

select the treebank embedding that is most suitable for the
input text, whether in a particular language or belonging to
a particular text genre.

In Stymne et al. (2018), we show that treebank embed-
dings provide an effective way to combine multiple het-
erogeneous treebanks in the monolingual setting. In ex-
periments with 24 treebanks in 9 languages from Univer-
sal Dependencies v2.1, we observe an average increase in
labeled attachment score (LAS) by 3.5 percentage points
compared to a single-treebank model, and by 2.2 percent-
age points compared to simple concatenation of training
sets. The treebank embedding technique performs on par
with the fine-tuning method of Che et al. (2017) and Shi
et al. (2017) but is both simpler and more efficient, since
only one model is used at both training and parsing time.
Another advantage of the treebank embedding technique is
that it is very reliable and, unlike the simple concatenation,
never degrades performance compared to the single-model
baseline.

In Smith et al. (2018a), we show that treebank embed-
dings can be used both monolingually, to combine several
treebanks for a single language, and multilingually, mainly
for closely related languages, especially where one or more
of the languages have limited amounts of training data.
Moreover, the monolingual and the multilingual case can
be seamlessly integrated, so that we can train multilingual
models where one or more languages have multiple tree-
banks. In the 2018 CoNLL Shared Task, we use only 34
models to parse test sets from 84 treebanks and show that
this improves LAS by 1.66 percentage points on average
over all test sets, by 3.54 for test sets where the correspond-
ing training sets are characterized as “small” by the shared
task organizers, and by as much as 7.61 percentage points
for low-resource languages that have practically no training
data.

5. The 2018 CoNLL Shared Task
The Uppsala team participated in the 2018 CoNLL Shared
Task: Multilingual Parsing from Raw Text to Universal De-
pendencies (Zeman et al., 2018), using a pipeline system
consisting of three components. The first component is
a model for joint sentence and word segmentation, which
uses the BiRNN-CRF framework of Shao et al. (2018) to
predict sentence and word boundaries in the raw input text.
The second component is a part-of-speech tagger based on
Bohnet et al. (2018), which employs a sentence-based char-
acter model and also predicts morphological features. The
final component is UUParser, which takes the segmented
words and their predicted tags and features as input and
produces full dependency trees.

After evaluation on the official test sets, the Uppsala sys-
tem ranked 7th of 27 systems with respect to LAS, with a
macro-average F1 of 72.37, making it the highest ranking
transition-based parser in this year’s shared task. It also
reached the highest average score for word segmentation
(98.18), universal part-of-speech tags (90.91), and mor-
phological features (87.59). For more information about
the Uppsala system in the CoNLL shared tasks of 2017
and 2018, see de Lhoneux et al. (2017a) and Smith et al.
(2018a).
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Figure 2: Illustration of the neural model scheme of the graph-based parser when calculating the score of a given parse
tree. The parse tree is depicted below the sentence. Each dependency arc in the sentence is scored using an MLP that
is fed the BiLSTM encoding of the words at the arc’s end points (the colors of the arcs correspond to colors of the
MLP inputs above), and the individual arc scores are summed to produce the final score. All the MLPs share the same
parameters. The figure depicts a single-layer BiLSTM, while in practice we use two layers. When parsing a sentence,
we compute scores for all possible n

2 arcs, and find the best scoring tree using a dynamic-programming algorithm.

scoring parse tree y in the space Y(s) of valid de-
pendency trees over s. In order to make the search
tractable, the scoring function is decomposed to the
sum of local scores for each part independently.

In this work, we focus on arc-factored graph
based approach presented in McDonald et al. (2005).
Arc-factored parsing decomposes the score of a tree
to the sum of the score of its head-modifier arcs
(h,m):

parse(s) = argmax
y2Y(s)

X

(h,m)2y

score
�
�(s, h,m)

�

Given the scores of the arcs the highest scoring pro-
jective tree can be efficiently found using Eisner’s
decoding algorithm (1996). McDonald et al. and
most subsequent work estimate the local score of an
arc by a linear model parameterized by a weight vec-
tor w, and a feature function �(s, h,m) assigning a
sparse feature vector for an arc linking modifier m
to head h. We follow Pei et al. (2015) and replace
the linear scoring function with an MLP.

The feature extractor �(s, h,m) is usually com-
plex, involving many elements (see Section 2.1).
In contrast, our feature extractor uses merely the
BiLSTM encoding of the head word and the mod-

ifier word:

�(s, h,m) = BIRNN(x1:n, h) � BIRNN(x1:n,m)

The final model is:

parse(s) = argmax
y2Y(s)

scoreglobal(s, y)

= argmax
y2Y(s)

X

(h,m)2y

score
�
�(s, h,m)

�

= argmax
y2Y(s)

X

(h,m)2y

MLP (vh � vm)

vi = BIRNN(x1:n, i)

The architecture is illustrated in Figure 2.

Training The training objective is to set the score
function such that correct tree y is scored above in-
correct ones. We use a margin-based objective (Mc-
Donald et al., 2005; LeCun et al., 2006), aiming to
maximize the margin between the score of the gold
tree y and the highest scoring incorrect tree y

0. We
define a hinge loss with respect to a gold tree y as:
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systematically varying the input representation xi of a word
wi. In the simplest model, xi is equal to a randomly initial-
ized word embedding er(wi):

xi = er(wi) (1)

In the most complex model, the randomly initialized em-
bedding is replaced by a pre-trained embedding et(wi),
which is concatenated with a character-based vector
BiLSTM(ch1:m), obtained by running a BiLSTM over the
characters ch1:m of wi, and an embedding e(pi) of the
word’s universal part-of-speech tag (Nivre et al., 2016):

xi = et(wi) ◦ BiLSTM(ch1:m) ◦ e(pi) (2)

In addition to the simplest and most complex models, we
test all combinations of one and two enhancements in ex-
periments on nine treebanks from Universal Dependen-
cies (Nivre et al., 2016) (v2.0): Ancient Greek (PROIEL),
Arabic (PADT), Chinese (GSD), English (EWT), Finnish
(TDT), Hebrew (HTB), Korean (GSD), Russian (GSD) and
Swedish (Talbanken). Our main findings can be summa-
rized as follows:

• For all techniques, improvements are largest for low-
frequency and open-class words and for morphologi-
cally rich languages.

• These improvements are largely redundant when the
techniques are used together.

• Character-based models are the most effective tech-
nique for low-frequency words.

• Part-of-speech tags are potentially effective for high-
frequency function words, but current state-of-the-art
taggers are not accurate enough to fully exploit this.

• Large character embeddings are helpful in morpholog-
ically rich languages, regardless of character set size.

4. Multi-Treebank Models
When training parsers, we sometimes want to combine (an-
notated) data from multiple, heterogeneous sources. In a
monolingual setting, we may have access to treebanks con-
taining different text genres or annotated in slightly differ-
ent styles. In a multilingual setting, we may want to com-
bine training data from multiple languages in order to im-
prove parsing accuracy for low-resource languages. Simply
concatenating the training sets, however, is unlikely to give
optimal performance and often results in degraded perfor-
mance. In recent work, we have explored the use of tree-
bank embeddings for parser training with heterogeneous
treebanks, generalizing the language embeddings of Am-
mar et al. (2016) to apply not only in multilingual but also
in monolingual settings.

The basic idea is to add a treebank embedding e(tbi) to
the input vector xi associated with each token wi:

xi = et(wi) ◦ BiLSTM(ch1:m) ◦ e(pi) ◦ e(tbi) (3)

At training time, the treebank embeddings allow the parser
to learn from multiple treebanks while remaining sensitive
to the idiosyncracies of each one. At parsing time, we can

select the treebank embedding that is most suitable for the
input text, whether in a particular language or belonging to
a particular text genre.

In Stymne et al. (2018), we show that treebank embed-
dings provide an effective way to combine multiple het-
erogeneous treebanks in the monolingual setting. In ex-
periments with 24 treebanks in 9 languages from Univer-
sal Dependencies v2.1, we observe an average increase in
labeled attachment score (LAS) by 3.5 percentage points
compared to a single-treebank model, and by 2.2 percent-
age points compared to simple concatenation of training
sets. The treebank embedding technique performs on par
with the fine-tuning method of Che et al. (2017) and Shi
et al. (2017) but is both simpler and more efficient, since
only one model is used at both training and parsing time.
Another advantage of the treebank embedding technique is
that it is very reliable and, unlike the simple concatenation,
never degrades performance compared to the single-model
baseline.

In Smith et al. (2018a), we show that treebank embed-
dings can be used both monolingually, to combine several
treebanks for a single language, and multilingually, mainly
for closely related languages, especially where one or more
of the languages have limited amounts of training data.
Moreover, the monolingual and the multilingual case can
be seamlessly integrated, so that we can train multilingual
models where one or more languages have multiple tree-
banks. In the 2018 CoNLL Shared Task, we use only 34
models to parse test sets from 84 treebanks and show that
this improves LAS by 1.66 percentage points on average
over all test sets, by 3.54 for test sets where the correspond-
ing training sets are characterized as “small” by the shared
task organizers, and by as much as 7.61 percentage points
for low-resource languages that have practically no training
data.

5. The 2018 CoNLL Shared Task
The Uppsala team participated in the 2018 CoNLL Shared
Task: Multilingual Parsing from Raw Text to Universal De-
pendencies (Zeman et al., 2018), using a pipeline system
consisting of three components. The first component is
a model for joint sentence and word segmentation, which
uses the BiRNN-CRF framework of Shao et al. (2018) to
predict sentence and word boundaries in the raw input text.
The second component is a part-of-speech tagger based on
Bohnet et al. (2018), which employs a sentence-based char-
acter model and also predicts morphological features. The
final component is UUParser, which takes the segmented
words and their predicted tags and features as input and
produces full dependency trees.

After evaluation on the official test sets, the Uppsala sys-
tem ranked 7th of 27 systems with respect to LAS, with a
macro-average F1 of 72.37, making it the highest ranking
transition-based parser in this year’s shared task. It also
reached the highest average score for word segmentation
(98.18), universal part-of-speech tags (90.91), and mor-
phological features (87.59). For more information about
the Uppsala system in the CoNLL shared tasks of 2017
and 2018, see de Lhoneux et al. (2017a) and Smith et al.
(2018a).

systematically varying the input representation xi of a word
wi. In the simplest model, xi is equal to a randomly initial-
ized word embedding er(wi):

xi = er(wi) (1)

In the most complex model, the randomly initialized em-
bedding is replaced by a pre-trained embedding et(wi),
which is concatenated with a character-based vector
BiLSTM(ch1:m), obtained by running a BiLSTM over the
characters ch1:m of wi, and an embedding e(pi) of the
word’s universal part-of-speech tag (Nivre et al., 2016):

xi = et(wi) ◦ BiLSTM(ch1:m) ◦ e(pi) (2)

In addition to the simplest and most complex models, we
test all combinations of one and two enhancements in ex-
periments on nine treebanks from Universal Dependen-
cies (Nivre et al., 2016) (v2.0): Ancient Greek (PROIEL),
Arabic (PADT), Chinese (GSD), English (EWT), Finnish
(TDT), Hebrew (HTB), Korean (GSD), Russian (GSD) and
Swedish (Talbanken). Our main findings can be summa-
rized as follows:

• For all techniques, improvements are largest for low-
frequency and open-class words and for morphologi-
cally rich languages.

• These improvements are largely redundant when the
techniques are used together.

• Character-based models are the most effective tech-
nique for low-frequency words.

• Part-of-speech tags are potentially effective for high-
frequency function words, but current state-of-the-art
taggers are not accurate enough to fully exploit this.

• Large character embeddings are helpful in morpholog-
ically rich languages, regardless of character set size.

4. Multi-Treebank Models
When training parsers, we sometimes want to combine (an-
notated) data from multiple, heterogeneous sources. In a
monolingual setting, we may have access to treebanks con-
taining different text genres or annotated in slightly differ-
ent styles. In a multilingual setting, we may want to com-
bine training data from multiple languages in order to im-
prove parsing accuracy for low-resource languages. Simply
concatenating the training sets, however, is unlikely to give
optimal performance and often results in degraded perfor-
mance. In recent work, we have explored the use of tree-
bank embeddings for parser training with heterogeneous
treebanks, generalizing the language embeddings of Am-
mar et al. (2016) to apply not only in multilingual but also
in monolingual settings.

The basic idea is to add a treebank embedding e(tbi) to
the input vector xi associated with each token wi:

xi = et(wi) ◦ BiLSTM(ch1:m) ◦ e(pi) ◦ e(tbi) (3)

At training time, the treebank embeddings allow the parser
to learn from multiple treebanks while remaining sensitive
to the idiosyncracies of each one. At parsing time, we can

select the treebank embedding that is most suitable for the
input text, whether in a particular language or belonging to
a particular text genre.

In Stymne et al. (2018), we show that treebank embed-
dings provide an effective way to combine multiple het-
erogeneous treebanks in the monolingual setting. In ex-
periments with 24 treebanks in 9 languages from Univer-
sal Dependencies v2.1, we observe an average increase in
labeled attachment score (LAS) by 3.5 percentage points
compared to a single-treebank model, and by 2.2 percent-
age points compared to simple concatenation of training
sets. The treebank embedding technique performs on par
with the fine-tuning method of Che et al. (2017) and Shi
et al. (2017) but is both simpler and more efficient, since
only one model is used at both training and parsing time.
Another advantage of the treebank embedding technique is
that it is very reliable and, unlike the simple concatenation,
never degrades performance compared to the single-model
baseline.

In Smith et al. (2018a), we show that treebank embed-
dings can be used both monolingually, to combine several
treebanks for a single language, and multilingually, mainly
for closely related languages, especially where one or more
of the languages have limited amounts of training data.
Moreover, the monolingual and the multilingual case can
be seamlessly integrated, so that we can train multilingual
models where one or more languages have multiple tree-
banks. In the 2018 CoNLL Shared Task, we use only 34
models to parse test sets from 84 treebanks and show that
this improves LAS by 1.66 percentage points on average
over all test sets, by 3.54 for test sets where the correspond-
ing training sets are characterized as “small” by the shared
task organizers, and by as much as 7.61 percentage points
for low-resource languages that have practically no training
data.

5. The 2018 CoNLL Shared Task
The Uppsala team participated in the 2018 CoNLL Shared
Task: Multilingual Parsing from Raw Text to Universal De-
pendencies (Zeman et al., 2018), using a pipeline system
consisting of three components. The first component is
a model for joint sentence and word segmentation, which
uses the BiRNN-CRF framework of Shao et al. (2018) to
predict sentence and word boundaries in the raw input text.
The second component is a part-of-speech tagger based on
Bohnet et al. (2018), which employs a sentence-based char-
acter model and also predicts morphological features. The
final component is UUParser, which takes the segmented
words and their predicted tags and features as input and
produces full dependency trees.

After evaluation on the official test sets, the Uppsala sys-
tem ranked 7th of 27 systems with respect to LAS, with a
macro-average F1 of 72.37, making it the highest ranking
transition-based parser in this year’s shared task. It also
reached the highest average score for word segmentation
(98.18), universal part-of-speech tags (90.91), and mor-
phological features (87.59). For more information about
the Uppsala system in the CoNLL shared tasks of 2017
and 2018, see de Lhoneux et al. (2017a) and Smith et al.
(2018a).
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Figure 2: Illustration of the neural model scheme of the graph-based parser when calculating the score of a given parse
tree. The parse tree is depicted below the sentence. Each dependency arc in the sentence is scored using an MLP that
is fed the BiLSTM encoding of the words at the arc’s end points (the colors of the arcs correspond to colors of the
MLP inputs above), and the individual arc scores are summed to produce the final score. All the MLPs share the same
parameters. The figure depicts a single-layer BiLSTM, while in practice we use two layers. When parsing a sentence,
we compute scores for all possible n

2 arcs, and find the best scoring tree using a dynamic-programming algorithm.

scoring parse tree y in the space Y(s) of valid de-
pendency trees over s. In order to make the search
tractable, the scoring function is decomposed to the
sum of local scores for each part independently.

In this work, we focus on arc-factored graph
based approach presented in McDonald et al. (2005).
Arc-factored parsing decomposes the score of a tree
to the sum of the score of its head-modifier arcs
(h,m):

parse(s) = argmax
y2Y(s)

X

(h,m)2y

score
�
�(s, h,m)

�

Given the scores of the arcs the highest scoring pro-
jective tree can be efficiently found using Eisner’s
decoding algorithm (1996). McDonald et al. and
most subsequent work estimate the local score of an
arc by a linear model parameterized by a weight vec-
tor w, and a feature function �(s, h,m) assigning a
sparse feature vector for an arc linking modifier m
to head h. We follow Pei et al. (2015) and replace
the linear scoring function with an MLP.

The feature extractor �(s, h,m) is usually com-
plex, involving many elements (see Section 2.1).
In contrast, our feature extractor uses merely the
BiLSTM encoding of the head word and the mod-

ifier word:

�(s, h,m) = BIRNN(x1:n, h) � BIRNN(x1:n,m)

The final model is:

parse(s) = argmax
y2Y(s)

scoreglobal(s, y)

= argmax
y2Y(s)

X

(h,m)2y

score
�
�(s, h,m)

�

= argmax
y2Y(s)

X

(h,m)2y

MLP (vh � vm)

vi = BIRNN(x1:n, i)

The architecture is illustrated in Figure 2.

Training The training objective is to set the score
function such that correct tree y is scored above in-
correct ones. We use a margin-based objective (Mc-
Donald et al., 2005; LeCun et al., 2006), aiming to
maximize the margin between the score of the gold
tree y and the highest scoring incorrect tree y

0. We
define a hinge loss with respect to a gold tree y as:
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Results
Pre-TrainedWordEmbeddings,Character
ModelsandPOSTags inDependencyParsing
Aaron Smith*, Miryam de Lhoneux, Sara Stymne, and Joakim Nivre

Research Questions

• How do dependency parsers benefit from
– pre-trained word embeddings (+ext),
– character models (+char),
– part-of-speech tags (+pos)?

• Are the techniques complementary or
redundant when used together?

• How does the impact vary across word
frequencies, word categories, and languages?
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• Part-of-speech tags are potentially very
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accurate enough to take full advantage of
this.

• Large character embeddings are helpful for
morphologically rich languages, regardless of
character set size.
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Main Findings

• We see the largest improvements for low-frequency and 
open-class words and for morphologically rich languages

• Techniques are mutually redundant, but character 
models are the most effective for low-frequency words

• Part-of-speech tags are potentially effective for high-
frequency function words, but current taggers are not 
accurate enough to realize this potential



A Tale of Two Parsers

• Transition-based and graph-based dependency parsers 
are known to have distinctive error profiles

• Do these patterns persist in the presence of neural 
network techniques?

• Do deep contextualized word representations benefit 
transition-based parsers more than graph-based parsers?

Artur Kulmizev, Miryam de Lhoneux, Johannes Gontrum, Elena Fano and Joakim Nivre 
2019. Deep Contextualized Word Embeddings in Transition-Based and Graph-Based 

Dependency Parsing – A Tale of Two Parsers Revisited. In Proceedings of EMNLP.



Historical Background

Ryan McDonald and Joakim Nivre. 2007. Characterizing the Errors of Data-Driven 
 Dependency Parsing Models. In Proceedings of EMNLP, pages 122–131.
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Figure 2: Illustration of the neural model scheme of the graph-based parser when calculating the score of a given parse
tree. The parse tree is depicted below the sentence. Each dependency arc in the sentence is scored using an MLP that
is fed the BiLSTM encoding of the words at the arc’s end points (the colors of the arcs correspond to colors of the
MLP inputs above), and the individual arc scores are summed to produce the final score. All the MLPs share the same
parameters. The figure depicts a single-layer BiLSTM, while in practice we use two layers. When parsing a sentence,
we compute scores for all possible n

2 arcs, and find the best scoring tree using a dynamic-programming algorithm.

scoring parse tree y in the space Y(s) of valid de-
pendency trees over s. In order to make the search
tractable, the scoring function is decomposed to the
sum of local scores for each part independently.

In this work, we focus on arc-factored graph
based approach presented in McDonald et al. (2005).
Arc-factored parsing decomposes the score of a tree
to the sum of the score of its head-modifier arcs
(h,m):

parse(s) = argmax
y2Y(s)

X

(h,m)2y

score
�
�(s, h,m)

�

Given the scores of the arcs the highest scoring pro-
jective tree can be efficiently found using Eisner’s
decoding algorithm (1996). McDonald et al. and
most subsequent work estimate the local score of an
arc by a linear model parameterized by a weight vec-
tor w, and a feature function �(s, h,m) assigning a
sparse feature vector for an arc linking modifier m
to head h. We follow Pei et al. (2015) and replace
the linear scoring function with an MLP.

The feature extractor �(s, h,m) is usually com-
plex, involving many elements (see Section 2.1).
In contrast, our feature extractor uses merely the
BiLSTM encoding of the head word and the mod-

ifier word:

�(s, h,m) = BIRNN(x1:n, h) � BIRNN(x1:n,m)

The final model is:

parse(s) = argmax
y2Y(s)

scoreglobal(s, y)
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(h,m)2y

score
�
�(s, h,m)

�

= argmax
y2Y(s)

X

(h,m)2y

MLP (vh � vm)

vi = BIRNN(x1:n, i)

The architecture is illustrated in Figure 2.

Training The training objective is to set the score
function such that correct tree y is scored above in-
correct ones. We use a margin-based objective (Mc-
Donald et al., 2005; LeCun et al., 2006), aiming to
maximize the margin between the score of the gold
tree y and the highest scoring incorrect tree y

0. We
define a hinge loss with respect to a gold tree y as:
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define a hinge loss with respect to a gold tree y as:
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systematically varying the input representation xi of a word
wi. In the simplest model, xi is equal to a randomly initial-
ized word embedding er(wi):

xi = er(wi) (1)

In the most complex model, the randomly initialized em-
bedding is replaced by a pre-trained embedding et(wi),
which is concatenated with a character-based vector
BiLSTM(ch1:m), obtained by running a BiLSTM over the
characters ch1:m of wi, and an embedding e(pi) of the
word’s universal part-of-speech tag (Nivre et al., 2016):

xi = et(wi) ◦ BiLSTM(ch1:m) ◦ e(pi) (2)

In addition to the simplest and most complex models, we
test all combinations of one and two enhancements in ex-
periments on nine treebanks from Universal Dependen-
cies (Nivre et al., 2016) (v2.0): Ancient Greek (PROIEL),
Arabic (PADT), Chinese (GSD), English (EWT), Finnish
(TDT), Hebrew (HTB), Korean (GSD), Russian (GSD) and
Swedish (Talbanken). Our main findings can be summa-
rized as follows:

• For all techniques, improvements are largest for low-
frequency and open-class words and for morphologi-
cally rich languages.

• These improvements are largely redundant when the
techniques are used together.

• Character-based models are the most effective tech-
nique for low-frequency words.

• Part-of-speech tags are potentially effective for high-
frequency function words, but current state-of-the-art
taggers are not accurate enough to fully exploit this.

• Large character embeddings are helpful in morpholog-
ically rich languages, regardless of character set size.

4. Multi-Treebank Models
When training parsers, we sometimes want to combine (an-
notated) data from multiple, heterogeneous sources. In a
monolingual setting, we may have access to treebanks con-
taining different text genres or annotated in slightly differ-
ent styles. In a multilingual setting, we may want to com-
bine training data from multiple languages in order to im-
prove parsing accuracy for low-resource languages. Simply
concatenating the training sets, however, is unlikely to give
optimal performance and often results in degraded perfor-
mance. In recent work, we have explored the use of tree-
bank embeddings for parser training with heterogeneous
treebanks, generalizing the language embeddings of Am-
mar et al. (2016) to apply not only in multilingual but also
in monolingual settings.

The basic idea is to add a treebank embedding e(tbi) to
the input vector xi associated with each token wi:

xi = et(wi) ◦ BiLSTM(ch1:m) ◦ e(pi) ◦ e(tbi) (3)

At training time, the treebank embeddings allow the parser
to learn from multiple treebanks while remaining sensitive
to the idiosyncracies of each one. At parsing time, we can

select the treebank embedding that is most suitable for the
input text, whether in a particular language or belonging to
a particular text genre.

In Stymne et al. (2018), we show that treebank embed-
dings provide an effective way to combine multiple het-
erogeneous treebanks in the monolingual setting. In ex-
periments with 24 treebanks in 9 languages from Univer-
sal Dependencies v2.1, we observe an average increase in
labeled attachment score (LAS) by 3.5 percentage points
compared to a single-treebank model, and by 2.2 percent-
age points compared to simple concatenation of training
sets. The treebank embedding technique performs on par
with the fine-tuning method of Che et al. (2017) and Shi
et al. (2017) but is both simpler and more efficient, since
only one model is used at both training and parsing time.
Another advantage of the treebank embedding technique is
that it is very reliable and, unlike the simple concatenation,
never degrades performance compared to the single-model
baseline.

In Smith et al. (2018a), we show that treebank embed-
dings can be used both monolingually, to combine several
treebanks for a single language, and multilingually, mainly
for closely related languages, especially where one or more
of the languages have limited amounts of training data.
Moreover, the monolingual and the multilingual case can
be seamlessly integrated, so that we can train multilingual
models where one or more languages have multiple tree-
banks. In the 2018 CoNLL Shared Task, we use only 34
models to parse test sets from 84 treebanks and show that
this improves LAS by 1.66 percentage points on average
over all test sets, by 3.54 for test sets where the correspond-
ing training sets are characterized as “small” by the shared
task organizers, and by as much as 7.61 percentage points
for low-resource languages that have practically no training
data.

5. The 2018 CoNLL Shared Task
The Uppsala team participated in the 2018 CoNLL Shared
Task: Multilingual Parsing from Raw Text to Universal De-
pendencies (Zeman et al., 2018), using a pipeline system
consisting of three components. The first component is
a model for joint sentence and word segmentation, which
uses the BiRNN-CRF framework of Shao et al. (2018) to
predict sentence and word boundaries in the raw input text.
The second component is a part-of-speech tagger based on
Bohnet et al. (2018), which employs a sentence-based char-
acter model and also predicts morphological features. The
final component is UUParser, which takes the segmented
words and their predicted tags and features as input and
produces full dependency trees.

After evaluation on the official test sets, the Uppsala sys-
tem ranked 7th of 27 systems with respect to LAS, with a
macro-average F1 of 72.37, making it the highest ranking
transition-based parser in this year’s shared task. It also
reached the highest average score for word segmentation
(98.18), universal part-of-speech tags (90.91), and mor-
phological features (87.59). For more information about
the Uppsala system in the CoNLL shared tasks of 2017
and 2018, see de Lhoneux et al. (2017a) and Smith et al.
(2018a).
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Figure 2: Illustration of the neural model scheme of the graph-based parser when calculating the score of a given parse
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is fed the BiLSTM encoding of the words at the arc’s end points (the colors of the arcs correspond to colors of the
MLP inputs above), and the individual arc scores are summed to produce the final score. All the MLPs share the same
parameters. The figure depicts a single-layer BiLSTM, while in practice we use two layers. When parsing a sentence,
we compute scores for all possible n

2 arcs, and find the best scoring tree using a dynamic-programming algorithm.

scoring parse tree y in the space Y(s) of valid de-
pendency trees over s. In order to make the search
tractable, the scoring function is decomposed to the
sum of local scores for each part independently.

In this work, we focus on arc-factored graph
based approach presented in McDonald et al. (2005).
Arc-factored parsing decomposes the score of a tree
to the sum of the score of its head-modifier arcs
(h,m):

parse(s) = argmax
y2Y(s)

X

(h,m)2y

score
�
�(s, h,m)

�

Given the scores of the arcs the highest scoring pro-
jective tree can be efficiently found using Eisner’s
decoding algorithm (1996). McDonald et al. and
most subsequent work estimate the local score of an
arc by a linear model parameterized by a weight vec-
tor w, and a feature function �(s, h,m) assigning a
sparse feature vector for an arc linking modifier m
to head h. We follow Pei et al. (2015) and replace
the linear scoring function with an MLP.

The feature extractor �(s, h,m) is usually com-
plex, involving many elements (see Section 2.1).
In contrast, our feature extractor uses merely the
BiLSTM encoding of the head word and the mod-

ifier word:

�(s, h,m) = BIRNN(x1:n, h) � BIRNN(x1:n,m)

The final model is:

parse(s) = argmax
y2Y(s)

scoreglobal(s, y)
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= argmax
y2Y(s)
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MLP (vh � vm)

vi = BIRNN(x1:n, i)

The architecture is illustrated in Figure 2.

Training The training objective is to set the score
function such that correct tree y is scored above in-
correct ones. We use a margin-based objective (Mc-
Donald et al., 2005; LeCun et al., 2006), aiming to
maximize the margin between the score of the gold
tree y and the highest scoring incorrect tree y

0. We
define a hinge loss with respect to a gold tree y as:
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scoring parse tree y in the space Y(s) of valid de-
pendency trees over s. In order to make the search
tractable, the scoring function is decomposed to the
sum of local scores for each part independently.

In this work, we focus on arc-factored graph
based approach presented in McDonald et al. (2005).
Arc-factored parsing decomposes the score of a tree
to the sum of the score of its head-modifier arcs
(h,m):

parse(s) = argmax
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Given the scores of the arcs the highest scoring pro-
jective tree can be efficiently found using Eisner’s
decoding algorithm (1996). McDonald et al. and
most subsequent work estimate the local score of an
arc by a linear model parameterized by a weight vec-
tor w, and a feature function �(s, h,m) assigning a
sparse feature vector for an arc linking modifier m
to head h. We follow Pei et al. (2015) and replace
the linear scoring function with an MLP.

The feature extractor �(s, h,m) is usually com-
plex, involving many elements (see Section 2.1).
In contrast, our feature extractor uses merely the
BiLSTM encoding of the head word and the mod-

ifier word:

�(s, h,m) = BIRNN(x1:n, h) � BIRNN(x1:n,m)

The final model is:
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The architecture is illustrated in Figure 2.

Training The training objective is to set the score
function such that correct tree y is scored above in-
correct ones. We use a margin-based objective (Mc-
Donald et al., 2005; LeCun et al., 2006), aiming to
maximize the margin between the score of the gold
tree y and the highest scoring incorrect tree y

0. We
define a hinge loss with respect to a gold tree y as:
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systematically varying the input representation xi of a word
wi. In the simplest model, xi is equal to a randomly initial-
ized word embedding er(wi):

xi = er(wi) (1)

In the most complex model, the randomly initialized em-
bedding is replaced by a pre-trained embedding et(wi),
which is concatenated with a character-based vector
BiLSTM(ch1:m), obtained by running a BiLSTM over the
characters ch1:m of wi, and an embedding e(pi) of the
word’s universal part-of-speech tag (Nivre et al., 2016):

xi = et(wi) ◦ BiLSTM(ch1:m) ◦ e(pi) (2)

In addition to the simplest and most complex models, we
test all combinations of one and two enhancements in ex-
periments on nine treebanks from Universal Dependen-
cies (Nivre et al., 2016) (v2.0): Ancient Greek (PROIEL),
Arabic (PADT), Chinese (GSD), English (EWT), Finnish
(TDT), Hebrew (HTB), Korean (GSD), Russian (GSD) and
Swedish (Talbanken). Our main findings can be summa-
rized as follows:

• For all techniques, improvements are largest for low-
frequency and open-class words and for morphologi-
cally rich languages.

• These improvements are largely redundant when the
techniques are used together.

• Character-based models are the most effective tech-
nique for low-frequency words.

• Part-of-speech tags are potentially effective for high-
frequency function words, but current state-of-the-art
taggers are not accurate enough to fully exploit this.

• Large character embeddings are helpful in morpholog-
ically rich languages, regardless of character set size.

4. Multi-Treebank Models
When training parsers, we sometimes want to combine (an-
notated) data from multiple, heterogeneous sources. In a
monolingual setting, we may have access to treebanks con-
taining different text genres or annotated in slightly differ-
ent styles. In a multilingual setting, we may want to com-
bine training data from multiple languages in order to im-
prove parsing accuracy for low-resource languages. Simply
concatenating the training sets, however, is unlikely to give
optimal performance and often results in degraded perfor-
mance. In recent work, we have explored the use of tree-
bank embeddings for parser training with heterogeneous
treebanks, generalizing the language embeddings of Am-
mar et al. (2016) to apply not only in multilingual but also
in monolingual settings.

The basic idea is to add a treebank embedding e(tbi) to
the input vector xi associated with each token wi:

xi = et(wi) ◦ BiLSTM(ch1:m) ◦ e(pi) ◦ e(tbi) (3)

At training time, the treebank embeddings allow the parser
to learn from multiple treebanks while remaining sensitive
to the idiosyncracies of each one. At parsing time, we can

select the treebank embedding that is most suitable for the
input text, whether in a particular language or belonging to
a particular text genre.

In Stymne et al. (2018), we show that treebank embed-
dings provide an effective way to combine multiple het-
erogeneous treebanks in the monolingual setting. In ex-
periments with 24 treebanks in 9 languages from Univer-
sal Dependencies v2.1, we observe an average increase in
labeled attachment score (LAS) by 3.5 percentage points
compared to a single-treebank model, and by 2.2 percent-
age points compared to simple concatenation of training
sets. The treebank embedding technique performs on par
with the fine-tuning method of Che et al. (2017) and Shi
et al. (2017) but is both simpler and more efficient, since
only one model is used at both training and parsing time.
Another advantage of the treebank embedding technique is
that it is very reliable and, unlike the simple concatenation,
never degrades performance compared to the single-model
baseline.

In Smith et al. (2018a), we show that treebank embed-
dings can be used both monolingually, to combine several
treebanks for a single language, and multilingually, mainly
for closely related languages, especially where one or more
of the languages have limited amounts of training data.
Moreover, the monolingual and the multilingual case can
be seamlessly integrated, so that we can train multilingual
models where one or more languages have multiple tree-
banks. In the 2018 CoNLL Shared Task, we use only 34
models to parse test sets from 84 treebanks and show that
this improves LAS by 1.66 percentage points on average
over all test sets, by 3.54 for test sets where the correspond-
ing training sets are characterized as “small” by the shared
task organizers, and by as much as 7.61 percentage points
for low-resource languages that have practically no training
data.

5. The 2018 CoNLL Shared Task
The Uppsala team participated in the 2018 CoNLL Shared
Task: Multilingual Parsing from Raw Text to Universal De-
pendencies (Zeman et al., 2018), using a pipeline system
consisting of three components. The first component is
a model for joint sentence and word segmentation, which
uses the BiRNN-CRF framework of Shao et al. (2018) to
predict sentence and word boundaries in the raw input text.
The second component is a part-of-speech tagger based on
Bohnet et al. (2018), which employs a sentence-based char-
acter model and also predicts morphological features. The
final component is UUParser, which takes the segmented
words and their predicted tags and features as input and
produces full dependency trees.

After evaluation on the official test sets, the Uppsala sys-
tem ranked 7th of 27 systems with respect to LAS, with a
macro-average F1 of 72.37, making it the highest ranking
transition-based parser in this year’s shared task. It also
reached the highest average score for word segmentation
(98.18), universal part-of-speech tags (90.91), and mor-
phological features (87.59). For more information about
the Uppsala system in the CoNLL shared tasks of 2017
and 2018, see de Lhoneux et al. (2017a) and Smith et al.
(2018a).
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Main Findings

• The distinctive error profiles of transition-based and 
graph-based parsers are still visible but less pronounced

• Deep contextualized word representations improve 
transition-based parsers more than graph-based parsers 
and eliminate most of the differences

• These patterns are remarkably consistent across 
languages in a typologically diverse sample



Do we need parsers at all?
• Do the vector spaces of deep contextualized word 

representations encode parse trees implicitly?

• Learn linear transform such that distance encodes tree 
distance and norm encodes tree depth

John Hewitt and Christopher D. Manning 2019. A Structural Probe for Finding  
Syntax in Word Representations. In Proceedings of NAACL, pages 4129–4138.
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Figure 2: Minimum spanning trees resultant from predicted squared distances on BERTLARGE16 and ELMO1 compared
to the best baseline, PROJ0. Black edges are the gold parse, above each sentence; blue are BERTLARGE16, red are ELMO1,
and purple are PROJ0.

attachment score (UUAS)—the percent of undi-
rected edges placed correctly—against the gold
tree. For distance correlation, we compute the
Spearman correlation between true and predicted
distances for each word in each sentence. We
average these correlations between all sentences of
a fixed length, and report the macro average across
sentence lengths 5–50 as the “distance Spearman
(DSpr.)” metric.5

3.2 Tree depth evaluation metrics
We evaluate models on their ability to recreate the
order of words specified by their depth in the parse
tree. We report the Spearman correlation betwen
the true depth ordering and the predicted ordering,
averaging first between sentences of the same
length, and then across sentence lengths 5–50, as
the “norm Spearman (NSpr.)”. We also evaluate
models’ ability to identify the root of the sentence
as the least deep, as the “root%”.6

4 Results

We report the results of parse distance probes and
parse depth probes in Table 1. We first confirm
that our probe can’t simply “learn to parse” on top
of any informative representation, unlike parser-
based probes (Peters et al., 2018b). In particular,
ELMO0 and DECAY0 fail to substantially outper-
form a right-branching-tree oracle that encodes the
linear sequence of words. PROJ0, which has all of
the representational capacity of ELMO1 but none
of the training, performs the best among the base-
lines. Upon inspection, we found that our probe
on PROJ0 improves over the linear hypothesis with

5The 5–50 range is chosen to avoid simple short sentences
as well as sentences so long as to be rare in the test data.

6In UUAS and “root%” evaluations, we ignore all punctu-
ation tokens, as is standard.

Figure 3: Parse tree depth according to the gold tree (black,
circle) and the norm probes (squared) on ELMO1 (red, trian-
gle) and BERTLARGE16 (blue, square).

mostly simple deviations from linearity, as visual-
ized in Figure 2.

We find surprisingly robust syntax embedded
in each of ELMo and BERT according to our
probes. Figure 2 shows the surprising extent to
which a minimum spanning tree on predicted
distances recovers the dependency parse structure
in both ELMo and BERT. As we note however, the
distance metric itself is a global notion; all pairs of
words are trained to know their distance – not just
which word is their head; Figure 4 demonstrates
the rich structure of the true parse distance metric
recovered by the predicted distances. Figure 3
demonstrates the surprising extent to which the
depth in the tree is encoded by vector norm after
the probe transformation. Between models, we
find consistently that BERTLARGE performs
better than BERTBASE, which performs better
than ELMO.7 We also find, as in Peters et al.
(2018b), a clear difference in syntactic information
between layers; Figure 1 reports the performance

7It is worthwhile to note that our hypotheses were
developed while analyzing LSTM models like ELMo, and
applied without modification on the self-attention based
BERT models.
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• How can we extract rooted directed dependency trees?

• How do results vary across different languages?
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attachment score (UUAS)—the percent of undi-
rected edges placed correctly—against the gold
tree. For distance correlation, we compute the
Spearman correlation between true and predicted
distances for each word in each sentence. We
average these correlations between all sentences of
a fixed length, and report the macro average across
sentence lengths 5–50 as the “distance Spearman
(DSpr.)” metric.5

3.2 Tree depth evaluation metrics
We evaluate models on their ability to recreate the
order of words specified by their depth in the parse
tree. We report the Spearman correlation betwen
the true depth ordering and the predicted ordering,
averaging first between sentences of the same
length, and then across sentence lengths 5–50, as
the “norm Spearman (NSpr.)”. We also evaluate
models’ ability to identify the root of the sentence
as the least deep, as the “root%”.6

4 Results

We report the results of parse distance probes and
parse depth probes in Table 1. We first confirm
that our probe can’t simply “learn to parse” on top
of any informative representation, unlike parser-
based probes (Peters et al., 2018b). In particular,
ELMO0 and DECAY0 fail to substantially outper-
form a right-branching-tree oracle that encodes the
linear sequence of words. PROJ0, which has all of
the representational capacity of ELMO1 but none
of the training, performs the best among the base-
lines. Upon inspection, we found that our probe
on PROJ0 improves over the linear hypothesis with

5The 5–50 range is chosen to avoid simple short sentences
as well as sentences so long as to be rare in the test data.

6In UUAS and “root%” evaluations, we ignore all punctu-
ation tokens, as is standard.

Figure 3: Parse tree depth according to the gold tree (black,
circle) and the norm probes (squared) on ELMO1 (red, trian-
gle) and BERTLARGE16 (blue, square).

mostly simple deviations from linearity, as visual-
ized in Figure 2.

We find surprisingly robust syntax embedded
in each of ELMo and BERT according to our
probes. Figure 2 shows the surprising extent to
which a minimum spanning tree on predicted
distances recovers the dependency parse structure
in both ELMo and BERT. As we note however, the
distance metric itself is a global notion; all pairs of
words are trained to know their distance – not just
which word is their head; Figure 4 demonstrates
the rich structure of the true parse distance metric
recovered by the predicted distances. Figure 3
demonstrates the surprising extent to which the
depth in the tree is encoded by vector norm after
the probe transformation. Between models, we
find consistently that BERTLARGE performs
better than BERTBASE, which performs better
than ELMO.7 We also find, as in Peters et al.
(2018b), a clear difference in syntactic information
between layers; Figure 1 reports the performance

7It is worthwhile to note that our hypotheses were
developed while analyzing LSTM models like ELMo, and
applied without modification on the self-attention based
BERT models.
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Directed Dependency Trees

• Derive (directed) arc scores from distances and depths

• Extract maximum spanning tree using the CLE algorithm

• Shorter distances correspond to higher arc scores

• Arcs from lower to higher nodes are excluded 

score(wi, wj) =

⇢
�dist(wi, wj) if depth(wi) < depth(wj)
�1 otherwise

1



Experimental Setup

• Multilingual BERT

• Fit probe on each of BERT’s twelve layers

• Learn weighted average across all layers

• Evaluate on same 13 UD languages as in previous studies
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Main Findings

• We can extract directed dependency trees from deep 
contextualized word representations

• Correspondence with treebank trees is substantially 
lower than for supervised parsers 

• Variation across languages correlate with supervised 
parsing results
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Conclusion

• Deep neural language models learn aspects of syntax

• Convergence across parsing models and algorithms

• No corresponding convergence across languages

• A multilingual perspective is still important

• UD as a touchstone for parsing and probing studies


